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Introduction

In his study of orbit equivalence of ergodic measure preserving transformations,
Henry Dye introduced the notion of full group of such a transformation. Recall
that if G is a countable group of non-singular transformations of a Lebesgue
measure space {X, p1), then the full group [G] of G is the set of all non-singular
transformations v of X such that

~(z) € Orbitg(z), for y-aexe X.

Therefore, if G; and G» are two groups of non-singular transformations of (X, u1),
they have the same orbits if and only if Gy C [Gs] and G, C [G:].

In [D2], Henry Dye proved the following remarkable result: if G, and G are
two countable groups of measure preserving transformations acting ergodically
on a Lebesgue space, then any group isomorphism between [Gi] and [G:] is
implemented by an orbit equivalence of G; and Gj.

Let Ty and T be two non-singular transformations acting ergodically on a
Lebesgue space. In [K1], W. Krieger proved that T; and T are orbit equivalent
if and only if their associated flows are conjugate. Note that this flow is the flow
of weights of the von Neumann factor W*(X, s, T') associated to the dynamical
system (X, pu, T).

Connes—Krieger ([CK]) in the measure preserving case, and Hamachi-Osikawa,
([HO]) in the general case, have associated to any ergodic non-singular transfor-
mation of (X, u) normalizing [G] an automorphism of the associated flow. This
correspondence, the so-called mod map, is a group homomorphism.

In {GPS}, we obtained an analogue of Krieger’s theorem for Cantor minimal
systems, i.e. minimal homeomorphisms of a Cantor set X. If ¢, and ¢» are two
minimal homeomorphisms of a Cantor set X, we proved that

#1 and ¢qare orbit equivalent (resp. strong orbit equivalent)

if and only if

there is an order isomorphism, preserving the order unit 1x, between the simple
dimension groups

K°(X, ¢1)/Inf(K°(X,¢1)) and K°(X,¢2)/Inf(K" (X, $2))
(resp.K°(X,¢1) and K°(X,¢s)).

In this paper, we obtain an analogue of Dye’s result and we introduce the mod
map for Cantor minimal systems.
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We define the full group [¢] of a Cantor minimal system (X, ¢), namely a
homeomorphism 3 of X belongs to (4] if

P(z) = ¢(2)"®, n(z)eZforallzeX.

The topological full group 7[¢] of (X, ¢) is the subgroup of [¢] consisting of the
homeomorphisms whose associated orbit cocycle n(z) is continuous.

In [K2], W. Krieger studied so-called ample, locally finite countable groups of
homeomorphisms of a Cantor set X.

Recall ([R], Chap 3, §1) that if I' is such a group, then the associated C*-algebra
C*(X,T) is an approximately finite dimensional (AF) C*-algebra.

We call therefore such a system (X, I") an AF-system and denote the associated
C*-algebra by AF (X,T).

If (X, ¢) is a Cantor minimal system and y € X, let 7{¢], denote the subgroup
of v € 7|¢] such that 7(Orbg(y]) = Orb;(y), where Orb;(y) is the forward
¢-orbit of y. By (K2}, Corollary 3.6, all 7[¢],, y € X, are isomorphic groups.

In Section 5 of [P], Ian Putnam showed that 7@}, is a minimal AF-system.

Let T be either (i) the full group, or (ii) the topological full group of a Cantor
minimal system, or (iii) a minimal AF-system.

Following Dye in [D2], we define for an open set O € X the local subgroups
o of I' by

Fo={y€T; v(z) =z, forallz € O°}.

In Section 3, we characterize algebraically the local subgroups I'y for U a clopen
subset of X.

In Section 4, the results of the preceeding section are used to show the following
result:

THEOREM: Let { Xy, ;) and (X2, ¢2) be Cantor minimal systems.
(i) (X1,¢1) and (X2, $2) are orbit equivalent if and only if [¢1] and [¢2] are
isomorphic.
(ii) (X1,¢1) and (X, ¢2) are flip-conjugate if and only if T[¢,] and T|¢2] are
isomorphic.
(i) (X,,#1) and (X2, ¢,) are strong orbit equivalent if and only if T[¢,},, and
T|$2ly, are isomorphic for any y; € X;, i = 1,2.

We want to stress that the isomorphisms in (i), (ii) and (iii) are abstract
isomorphisms.

If (X, ¢) is a Cantor minimal system, we show in Section 5 that, up to nor-
malization, there exists only one non-trivial homomorphism from 7{¢] to Z. We
will call this map the index map.
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If C¢(¢) denotes the subgroup of all v € Homeo(X) such that either y¢y~1 =
¢ or y¢y~! = ¢~!, then we prove that the normalizer N(r[¢]) of 7[¢] (in
Homeo(X)) is isomorphic to the semi-direct product of the kernel of the index
map by C¢(¢).

Using a refinement of the methods used in Section 3, we show that the kernel
of the index map is a complete algebraic invariant of flip-conjugacy of a Cantor
minimal systems (X, ¢).

Let Homeoyy, (X) denote the subgroup of all homeomorphisms of X preserving
the ¢-invariant probability measures on X. In Section 1, we define a homomor-
phism

mod : Homeopy, (X) — Aut(K°(X, ¢)/Inf(K°(X, ¢))).

Considering on Homeo(X) the topology of pointwise norm convergence on
C(X), we then show:

(i) ker(mod) is equal to the closure of [¢],

(ii) the restriction of mod to the normalizer N([¢]) of [¢] is surjective,

(iii) Homeopr, (X) = N([¢])-

Let C*(X, ¢) be the C*-crossed product associated with (X, ¢) and let C(X)
be the C*-algebra of continuous functions on X. Let us denote by
Autc(x)(C*(X, $)) the subgroup of automorphisms of C*(X, ¢) which fix C(X)
globally, and the inner ones by Inng(xy(C* (X, ¢)).

In Section 5 of [P}, Putnam considered the topological full group and showed
that if UN(C(X),C*(X,¢)) denotes the subgroup of unitaries of C*(X,¢)
normalizing C(X), then we have the short exact sequence:

1= UC(X)) » UN(C(X),C*X, ¢)) = 7]¢] = L.
Using this, we prove in Section 2 that we have two short exact sequences:

1 - U(C(X)) — Autgx)(C*(X,¢)) — N(7[¢]) = 1
11— U¢ —> Innc(x)(C*(X, (]5)) — T[¢] - 1,

where U, = {f € U(C(X)); 3g € U(C(X))withf = (g0 $)7}.
Let

By={f~fo¢™"; feC(X,2)}

be the subgroup of coboundaries of C(X,Z). Recall that K°(X,¢) is order
isomorphic to C(X,Z)/B, (with the usual ordering).
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If Homeop, (X) denotes the set of all homeomorphisms of X preserving By,
then as in Section 1 we define a homomorphism mod from Homeop, (X) to
Aut(K°(X, ¢)). We then show

(i) ker(mod) is equal to the closure of both 7{¢] and of 7[¢],, for any y € X,

(ii) the restriction of mod to the normalizer N(7{¢],) of 7[d], is surjective,

(iii) Homeop, (X) = N(7[¢]y).
Notations: If X is a metric compact space, we denote by
(i) O(X) the collection of all open subsets of X.
(ii) CL{X) the collection of all closed subsets of X.
(iii) CO(X) the Boolean algebra of all clopen subsets of X.
(iv) Homeo(X) the group of all homeomorphisms of X. For v € Homeo(X) and
U C X, vy denotes the restriction of v to U.
(v) For A C X, A° (resp. A, A°) denotes the interior (resp. closure, comple-
ment) of A. Also, x4 denotes the characteristic function of A.
We will use [] to denote a disjoint union.

1. The full group of a Cantor minimal system

Let (X, ¢) be a dynamical system, where X is a compact Hausdorff space and
¢ is a homeomorphism of X. For each z € X, we denote the ¢-orbit of z by
Orbg(z).

Definition 1.1:
(a) The full group [¢] of (X, $) is the subgroup of all homeomorphisms y of X
such that
v(z) € Orby(z), forallze X.

{b) We will denote by N[¢] the normalizer
{e € Homeo(X); afgla™ = [4]}
of [¢] in Homeo(X).
Remark 1.2: To any v € 4] is associated a map n : X — Z, defined by
v(z) = ¢"®(z), forz € X.

If ¢ has no periodic points, then n is uniquely defined and the closed sets X}, =
{x € X; y(z) = ¢*(x)} = n~'({k}) form a partition of X, and

X = 1] xx =[] ¢*(Xw).

k€Z kEZ
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Using the result of Sierpinski (see for example [Ku]) which says that there is
no non-trivial countable partition of a connected compact Hausdorff space into
closed sets, we have (see [BT] or [GPS] and [{Kup]) the following:

ProrosiTioN 1.3: Let (X, ¢) be a dynamical system as above. If either X is
connected and ¢ has no periodic points or if the complement of the periodic points
is path-connected and dense, then the full group [¢] is equal to {¢™; n € Z}.

ProposSITION 1.4: If (X, ¢) is a dynamical system, then

N[¢] = {@ € Homeo(X); a(Orby(z)) = Orby(a(z)), forallz € X}.

Proof: Let o€ N[¢], z € X and k € Z. As a¢*a~! and a~'¢*a belong to [¢],
we have

a(¢*(z)) = ag*a(a(z)) € Orby(a(z))

and
o Y¢F(efz)) = a~ ¢*a(z) € Orby(z).
Hence N[¢] C {a € Homeo(X); a(Orbys(z)) = Orbg(a(z)), for all z € X}.
Conversely, let @ € Homeo(X) with a(Orby(z)) = Orbg(a(z)) for all z € X,
and v € [¢]. If z € X, then there exist k,! € Z such that
aya}(2) = av(a(2)) = a(¢F (a7 (2)) = ¢'(2)-
Hence, aya™! € [¢], and so a € N[4]. [ |

Recall that if A is a separable C*-algebra, then Aut(A) with the topology of
pointwise convergence on A is a complete metrizable group. Let (z,)n>1 be a
dense sequence in the unit ball of A, and for a, 5 € Aut(A), set

d(,5) = Y- o= llafzn) - Blza)l.
n>1

Then d is a metric on Aut(A) whose induced topology on Aut(A) is the pointwise
convergence in norm on A. Therefore we get

LEMMA 1.5: If X is a compact metric space, then with the topology of pointwise
convergence in norm on C(X), Homeo(X) is a complete metrizable group.

Remark 1.6: (a) This topology is equivalent to the following introduced in
[GW1] and given by the metric

d(e,B) = sup d(e(z), B(z)) + sup d(e ! (z), 87 (z)).
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(b) If (an)n>1 is a sequence of of homecomorphisms converging to a in
Homeo(X), then for any U € CO(X), there exists N such that a,(U) = a(U),
foralln > N.

Let us denote by M(X) the w*-compact convex set of probability measures on
X and by M, the w*-compact convex subset of M(X) of ¢-invariant measures.
If v € Homeo(X) and ¢ € M(X), we denote by v*(x1) the probability measure

pwov~1. Notice that v* defines an affine homeomorphism of M(X).

Definition 1.7: The subgroup Homeoas, (X) will denote the set of all homeo-
morphisms y € Homeo(X ) such that v*(My) = M.

It is easily verified that N[¢] C Homeop, (X).

LEMMA 1.8: If (X,¢) is a Cantor minimal system, then the subgroup
Homeoyp, (X) is closed.

Proof: If (vn)n>1 is a sequence in Homeoy, (X ) converging to -y, then by Remark
1.6, for any U/ € CO(X), 7, (U) = v(U) if n is large enough. Hence u(y~}(U)) =
p(U) for all U € CO(X) and all ;1 € My. By regularity of p € My, the limit
belongs to Homeop, (X). ]

Let (X,¢) be a Cantor minimal system. By [GPS], Theorem 2.2, the simple
dimension group K°(X,$)/Inf(K°(X, $)), with order unit, is a complete invari-
ant of orbit equivalence of (X, ¢). Following G.A. Elliott’s point of view, we will
consider K%(X,$)/Inf(K°(X,¢)) as the associated flow of the minimal Cantor
system (X, ¢) and define a mod map as in [CK], {CT] and [HO|.

Let Z, = {f € C(X,Z); u(f) =0, Vu € My} and (C(X,Z}/Z4)* be the
positive cone defined by

[f] > 0if and only if pu{f) >0, Vue M,,

where [f] denotes the equivalence class of f € C(X,Z). Then C(X,Z)/Z4 is
naturally order-isomorphic to K°(X, #)/Inf(K°(X, ¢)) by [GPS], Theorem 1.13.
Hence, if v € Homeop, (X) and U € CO(X), then

mod(Y)([xv]) = [x+w)]

gives rise to an order automorphism of K°(X,#)/Inf(K°(X,¢)) preserving the
order unit.

As mod(af) = mod(a) mod(f3) for all a, 8 € Homeopy, (X ), we have
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Definition 1.9: Let Aut(K°(X,¢)/Inf(K°%(X,¢))) be the group of all order
automorphisms of K°(X, ¢)/Inf(K(X, ¢)) preserving the order unit 1x.Then

mod : Homeopy, (X)) — Aut(K°(X, ¢)/Inf(K°(X, ¢)))

is the group homomorphism defined by +v — mod(~).
LEMMA 1.10: Keceping the above notations, then ker(mod) = Ia

Proof: By definition of mod and Z4, we must show that
m = {7y € Homeopr, (X); v* (1) = pt5 Y € My}
If v € @], then woy~! = p, for all jt € M. Thus by Remark 1.6,
m C {vy € Homeoar, (X); 7" (u) = p. YV € My}

Conversely, let v € Homeo(X) such that v*(u) = p for all p € M, and let
(Pn)a>1 be an increasing sequence of partitions of X (into clopen sets), whose
union gencrates the topology of X. By [GW], Proposition 2.6 (see Lemma 3.3
below), we can construct, for cach n > 1, v, € [@] such that v, (U) = y(U) for
each U € P,. Then (v)n>1 is a sequence in [¢] whose limit is +y. ]

PROPOSITION 1.11: The restriction of mod to N{¢)| is surjective.

Proof:  As K°(X,¢)/Inf(K%(X,¢)) is a simple dimension group, there exists by
[P] and [HPS] (see for example [GPS], Theorem 1.12) a simple ordered Bratteli
diagram (B, >) such that if © denotes the path space of B and ¢ the Vershik
transformation induced by (B, >), we have

K°(X, ¢)/Inf(K°(X,¢)) = K°($,9).
Moreover, let C denote the equivalence relation on € given by
w1Cws if and only if wy and wy are cofinal,

and let ¢ be the minimal AF-system associated to C, i.e., I'c = T[], where y
is the maximal path of © (see Definition 2.5). Then

K°(Q,¢) = K°(AF(Q,T¢)).

By [GPS], Theorem 2.2, there exists an orbit equivalence g : X — € between ¢
and .
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Recall that if n € Homeo(2) preserves C, then it induces an isomorphism of
K%(AF(Q,T'¢)) which we denote by Kq(n). Let

o € Aut(K°(X, ¢)/Inf(K°(X, ¢))).

By [K2], Corollary 3.6, there exists 7 € Homeo((2) which respects C with Ko(n) =
a. Let a = g~'ng € Homeo(X). By construction, a(Orbg(z)) = Orby(a(z)) for
all z € X and mod{a) = Ky(n) = . By Proposition 1.4, a € N[¢]. |

PROPOSITION 1.12: The closure of N[¢] in Homeo(X) is Homeopy, (X).

Proof: If v € Homeops, (X), then by Proposition 1.11, there is 7 € N|¢] with

mod{(7y) = mod{n).

By Lemma 1.10, 571y € [¢] and therefore v € NJg).
As N{¢] C Homeop,(X) and Homeoyy, (X) is closed, Proposition 1.12 follows.
|

Remark 1.13: Mike Boyle constructs explicitly an element of
Homeou, (X) ~ N[¢] in [B2]. |

2. Topological full group of a Cantor minimal system

Let (X, ¢) be a Cantor minimal system. As above, [¢] denotes the full group of
(X, )

Recall (Remark 1.2) that if v € [¢], then there exists a unique map n: X = Z
such that y(z) = ¢"® (z), for all z € X.

Definition 2.1: If (X, ¢) is a Cantor minimal system, then
(a) the topological full group 7[¢] of ¢ is the subgroup of all homeomorphisms
v € |@], whose associated map n: X — 7Z is continuous,
(b) N(7[¢]) denotes the normalizer of 7[¢] in Homeo(X).

Let v € 7{¢] and, for each k € Z,
Xi={z € X; 7(2) = ¢"(2)} = n'({k}).

Then, {Xx)rez is a finite partition of X into clopen sets such that
X =[] X =[] ¢*(xx)-
keZ keZ

Therefore, 74| is a countable group.
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Definition 2.2: Let H be a subgroup of Homeo(X).

veey

X =[] Xe = [T me(X0),

k€EZ keZ

we associate the homeomorphism v of X defined by
v(z) = ne(z), forall z € Xi.

The subgroup 7[H] of all such homeomorphisms is the topological full group of
H.

Definition 2.3: Let (X, ¢) be a Cantor minimal system and C*(X,¢) be the
associated C*-crossed product. We let

(a) Autopn(C*(X,9) = {a € Aut(C*(X,8): a(O(X)) = C(X)),

(b) Inng(xy(C*(X, ¢)) = Autox)(C* (X, ¢)) N Inn(C* (X, ¢)),

(c) Up = {f € U(C(X));3g € U{C(X)) with f = (g0 ¢)g}.

The C*-crossed product C*(X,¢) is generated by C(X) and a unitary v such
that

ufu* = fop~! forall f € C(X).

C(X) is a maximal abelian subalgebra (masa) of C*(X, ¢).

Let us recall the C*-algebra construction of the topological full group given in
Section 5 of [P]:

Let UN(C(X),C*(X,¢)) = {v € U(C"(X,9)); vC(X)v* = C(X)}. By [P],
Lemma 5.1, if v € UN(C(X),C*(X,$)), then v = f} ., u"pn, where f €
UC(X) and (pn)nez is a finite partition of C(X) into orthogonal projections
such that I =3 7 pn = ). 7 ¢"(ps). Moreover, this decomposition is unique.

To such v € UN(C(X),C*(X,)), we associate the element ®(v) of the topo-
logical full group given by

o(v)(z) = ¢"(2) ifz € pp.

Observe that Adv{g) = go ®(v)~?, where g € C(X) and Ad v denotes the inner
antomorphism v - v* of C*(X, ¢).
Then we get the following short exact sequence:

*) 1 -5 U(C(X)) = UN(C(X),C*(X, 6)) -2 7[¢] > 1.

This short exact sequence splits. Indeed, if y € 7[¢] and (X )kez is the associated
finite partition of X, then v, =} uwFxx, € UN{C(X),C*(X, ¢)) and &(v,) = 7.
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If o € Autex)(C*(X,¢)), then o defines an automorphism of C(X) and
therefore a homeomorphism 7m(a) of X such that

a(f) = for(a)™, VfeC(X).
Let o U(C(X)) — Autgxy(C*(X,¢) denote the homomorphism defined for
g € U(C(X)) by
g)f=f, VfeC(X) and i(g)u=ug.
Then we have
ProPOSITION 2.4: Let (X, ¢) be a Cantor minimal system. We have the follow-

ing two short exact sequences:

(2.4.1) 1 - U(C(X)) -5 Autexy(CT(X, 4)) — N(r[¢]) = 1,

(2.4.2) 1 — Uy — Inng(x)(C*(X, 9)) — 7[g] = 1.

These short exact sequences split.

Proof: Let m,. and ® be as above and let & € Autg(x)(C*(X,9)). Then we
have for f € C(X),

a(ufu*) = a(u)f or(a) ta(u)* € C(X).

Hence, a(u) € UN(C(X),C*(X,$)). Thus, there is n € 7[¢] and f, € U(C(X))
with a(u) = fav,, according to (x).
If v € 7[¢] and g € C(X), then

go (n(a)ym(a)™") ™! =go (n(a)y™ m(a)™")
=a(gom(a) oy !) = aoAdvy(gon(a)) = Ad a(vy)(g)-

Therefore, m(a)ym(a)™! € 7[¢] and 7(a) € N(7[¢)).
The homomorphism ¢ is clearly injective. If o € kerm, then for f € C(X), we
have

a(u)fa(u*) = a(ufu*) = a(fo¢™!) = fo ™! = ufu”.
Hence u*a(u) = go € U(C(X)) and ¢{gy) = .
If v € N(7[¢]), then 7¢y~! € 7[¢]. Let v 4y~ € UN(C(X),C*(X,)) such
that

(I)('U'yzﬁ'y“l) = 7(1)'7—1'
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Let us denote by s(y) € Autc(x)(C*(X, ¢)) the automorphism given by

S(f) = fory™ VfECX) and  s(7)(w) = vygyr.

The map s: N(7(¢]) = Auto(x)(C*(X,$)) is a homomorphism and by construc-
tion 7(s(7)) = . Therefore the short exact sequence (2.4.1) splits.
For the proof of (2.4.2), notice that if Adv € Inng(x)(C*(X, ¢)), then

v € UN(C(X),C*(X, 8)).

Hence m(Adv) = ®(v) € 7(¢], and 7|iune «,(c~(X,4)) IS surjective according to
*).

If Adv € kerm, then as C(X) is a masa in C*(X, ¢), the unitary v is equal
to g € U(C(X)). As u* Adv(u) = u*gug = (g9 0 ¢)g, the short exact sequence
(2.4.2) is checked.

By construction, if v € 7[¢], then s{y) = Adv,. |

In [P|, Ian Putnam has shown that if y € X, the C*-subalgebra A(,, of
C*(X, ¢) generated by C(X) and uCo(X ~\ {y}) is an AF (i.e. approximately
finite dimensional) C*-algebra. Let UN(C(X), A(yy) denote the normalizer of
C(X) in U(Agyy)-

For all y € X, let

Orb] (y) = {¢"(y); k > 1}
denote the forward ¢-orbit of y, and let 7[¢], denote the subgroup of 7[¢]
characterized by
v € Tdly if y(Orb}(y)) = Orby (y).

By [P], Theorems 5.1 and 5.4, we then have that for any y € X, the group 7(¢],
is isomorphic to UN (C(X), Agy})/U(C(X)). It is a fact that for any y € X, 7{¢],
is a countable, locally finite ample group that acts minimally on X, i.e. a minimal
AF-system according to the following definition.

Definition 2.5: Let X be a Cantor set. A minimal AF-system I is a locally
finite, countable group of homeomorphisms of X, so that the action is minimal
and ample. By ample action of I' we mean the following (see [K2]): whenever

k k
X =][4=]]n4)
=1 =1

are two clopen partitions of X with ; € T, then v € ', where for i = 1,...,k,
v|A; = 7:|A;. We also require that the fixed point set of each element of I is
clopen.
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It can be shown that any minimal AF-system arises as some 7[¢], as described
above (cf. [K2] and [SV]). As in [SV], Chap 1.1, the groupoid C*-algebra A(X,T)
associated to a minimal AF-system I" of a Cantor set X is an approximately finite
dimensional C*-algebra, whose C(X) is a Cartan subalgebra ([R], Definition
4.13). The following definition is analogous to Definition 2.3.

Definition 2.6: Let (X,T") be a minimal AF-system and A(X,T) be the associ-
ated groupoid C*-algebra. We denote by
(8) Autoen(A(X, 1)) = {a € Aut(A(X,T)); a(C(X)) = C(X)},
(b) Inng(x)(A(X,T)) = Autgx)(A(X,T)) N Inn(A(X,T)),
(¢) ZYT,U(C{X))) = {w: T = U(C(X)); (wy 0 p)wy, = w,, for all v,p € T'},
the group of one-cocycles,
(d) BYI,U(C(X))) = {w e ZYT,U(C(X))); Fv € U(C(X)) such that w, =
(vo~y)v* for all v € T'}, the group of one-coboundaries.

If o € Autgx)(A(X,T)), then o defines an automorphism of C(X) and
therefore a homeomorphism 7(a) of X such that

af) = fom(a)™ VfeC(X).

If u: T = U((A(X,T))) is the unitary representation of I' which implements the
action of T on C(X), then let us denote by

v Z'(T,U(C(X))) = Autex)(A(X,T))
the homomorphism defined for w € ZY(T', U(C(X))) by
vw)f=f, VfeC(X) and i(w)uy, = uyw,.

Recall (Definition 2.2) that if H is a subgroup of Homeo(X), 7[H] denotes the
topological full group of H. Then as in 2.4, we have
ProprosITION 2.7: Let (X, T') be a minimal AF-system. We have the following
two short exact sequences:
1 ZY(I,U(C(X))) — Autex)(A(X,T)) = N(T) = 1,
1 — BYT,U(C(X))) = Inng(x)(A(X,T)) > T — 1.

These short exact sequences split.

Before defining a mod map as in the full group case, let us recall the
construction of the K-groups that we need.
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If ¢ is a minimal homeomorphism of the Cantor set X (resp. I' is a minimal
AF-system), then we denote by

By ={f-fo¢™";f € C(X,D)} (resp. Br ={f - foy™';f € C(X,Z),y €T}

the coboundary subgroup of C(X,Z). Now K°(X,¢) (resp. K°(X,T)) is defined
as C(X,Z)/By (resp. C(X,Z)/Br) with the induced ordering.

Then K% X, ¢) and K°(X,T) are simple dimension groups with distinguished
order unit 1x = [xx], where we let [f] denote the equivalence class of f €
C(X,Z). If f = xo, where O is clopen, we will sometimes write [O] to denote
[xo]. Moreover, if y € X, then K°(X, ¢) and K°(X, 7[¢},) are order isomorphic
(see [P] for a C*-algebra proof or [GW], Theorem 1.1 for a purely dynamical
proof).

Definition 2.8: 'The subgroup Homeopg, (X) will denote the set of all homeomor-
phisms « € Homeo(X) such that v~}(B,) = Bj.

For any y € X, we have the following inclusions:
7[¢] C N(r(¢]) C Homeop,(X) and 7(¢], C N(7[¢],) C Homeop, (X).

As in Section 1, we consider on Homeo(X) the topology of pointwise conver-
gence in norm on C(X). Then we have

LEMMA 2.9: If X is a Cantor set, the subgroup Homeop, (X) is closed.

Definition 2.10: Let mod: Homeog, (X) — Aut(K°(X, ¢)) be the group homo-
morphism defined for « € Homeog, (X), by

mod(a)([f]) = [foa™], feC(X,2),

where Aut(K°(X,¢)) is the group of all order automorphisms of K°(X, #) pre-
serving the order unit 1x.

Neither 7[¢] nor 7{¢], are closed subgroups. We have

PROPOSITION 2.11: For any y € X, we have ker(mod) = 7[¢] = 7[¢],.

Proof: By Lemma 3.3, which is proved in Section 3, 7[¢] C ker{mod).

Let y € X be fixed. If a = limay,, o, € 7{@]y, and U € CO(X), then there
exists N such that a,(U) = a(U), for n > N. Hence [a(U)] = [U]. Clearly the
same holds true for f € C(X,Z). Therefore, 7[¢], C ker(mod).

Conversely, let a € ker(mod) and let (P,)n>1 be an increasing (i.e. P, <
Pr+1) sequence of partitions of X (into clopen sets), whose union generates the
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topology of X. By Lemma 3.3, for each n > 1, there exists oy, € T[], such that
an(U) = a(U) for each U € P,. Hence, o € 7[4)],. 1

As K°(X, ¢) = K% X, r(¢],), we get by [K2], Corollary 3.6,
PROPOSITION 2.12: The restriction of mod to N(t[¢],) is surjective.
As in 1.12, we then have

PROPOSITION 2.13: N(7[¢],) is dense in Homeop, (X).

3. Algebraic characterization of the local subgroups of the full groups

Let X be a Cantor set. In this section, we will say that a group is of class F if it
is one of the following subgroups of Homeo(X):
e the topological full group 7[¢] of a minimal homeomorphism ¢ of X,
o the full group [¢] of a minimal homeomorphism ¢ of X,
e a minimal AF-system I, i.e. I' is a locally finite, countable group of home-
omorphisms of X, so that the action is minimal and ample (cf. Definition
2.5).

Remark 3.1: The three cases are different by observing the following:
(a) A minimal AF-system is a countable group, where each element has finite
order.
(b) T[¢] is also countable, but has elements of infinite order since ¢ € 7[4)].
(c) The full group {¢] is uncountable.

We will use the following notation of Hopf-equivalence (see for example [R]):

Definition 3.2: Let X be a Cantor set and I' be a group of class F.
(a) Two clopen sets U and V of X are I'-equivalent {denoted by U ~r V) if
there exists v € I' with (U} = V.

(b) If U is T'-equivalent to a proper clopen set of V, we will write U < V.

Let us denote by K°(X,T) the simple dimension group:
o K(X,$)if T = 7[g],
o KX, ¢)/Inf(K°(X,¢)) if T = [4],
e K%X,T)if I' is a minimal AF-system.

If T is a group of class F, we remark that according to [K2] or [R], pp. 130-
131, K°(X,T) is the simple dimension group associated to the dimension range
D(T) = CO(X)/ ~r.

Let us recall now some technical lemmas which will be used frequently in this
section.
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LEMMA 3.3: Let ' be a group of class F and let U and V be two clopen subsets
of X. Then the following are equivalent:

(a) [xv] = [xv] in KO(X,T).

(b) U~pV

(c) There exists v € T with +? = | such that y(UU) = V and v|;yuyy = 1.

Proof: As (¢)=(b)=>(a) is clear, we only have to check {a)=>(c).

If T = [¢]. this follows from [GW], Proposition 2.6. If I' = 7(¢] (resp. " a
minimal AF-system), then it is a consequence of the Bratteli-Vershik model for
(X, @) (cf. [HPS], Theorem 4.7. and [J], Theorem 4.12 for the details). |

By the minimal action of I', we get as a consequence of this result the following:

LEMMA 3.4: Let I" be a group of class F. For any U € CO{X) and every z € U,
there is v € T such that y(x) # < and v|yc = 1, ¥* = 1.

The next lemma is proved in [GW], Lemma 2.5, if T’ = [¢]; it follows from
[HPS], Theorem 4.7 (for details see [J], Theorem 4.11), if I’ = 7[¢] or a minimal
AF-system.

LeEMMA 3.5: Let I' be a group of class F and U € CO(X) . If0 < a < [U] in
K%(X,T), then there exists A € CO(X) with A C U and [A] = a in K°(X,T).

Let us fix for the rest of this section a group I' of class F.

Definition 3.6:
(1) If O € O(X), then ' will denote the set of all v € T such that

v(x) =z, forallze O°

(2) A subgroup of T of the form I'yy, U € CO(X), will be called a local
subgroup of I.

The aim of this section is to characterize algebraically the local subgroups of

I', by introducing several conditions on pairs of subgroups of I'. The conditions

(D1), (D2) (of Definition 3.10) and (D4) (of Definition 3.25) follow from Dye’s

original paper, while conditions (D3) (of Definition 3.22) and (D5) (of Definition
3.25) are new.

Definition 3.7: For any subset H of I', the commutant of H in I’ will be denoted
hy H*.

Note that if H = H~', then H' is a subgroup of I'. Keeping the standard
notation (cf. [H]), we will use the following:



Vol. 111, 1999 FULL GROUPS OF CANTOR MINIMAL SYSTEMS 301

Definition 3.8:
(1) If O € O(X), then O+ denotes the open set (0)¢ = (O°)°.
(2) If F € CL(X), then F'' denotes the closed set (F©) = (F°)°.
(3) An open set O is regular if O++ = O (i.c. (0)° = O).
(4) A closed set C is regular if Ct4 = C (i.c. Cc°=0).

We will denote by RO(X) the collection of all regular open subsets of X. Note
that O € RO{X) if and only if O° is a regular closed set.

LEMMA 3.9: If O,0; and O, are open sets of X, then
(@) Oy C Oy, =T, CTlo,.
{(b) TonTpL = {1}
(¢) (To)* =Tpr and g CTE~.
(d) If O € RO(X). then [ =Tt

Proof:  (b) follows directly from the definitions.

For (a): If O; C Oy, then by definition T, C I'p,. Conversely, if = € Oy, let
V < O; be a clopen set containing . By Lemma 3.4, there exists n € T'y such
that n(z) # . Asne Ty CTy, CTo, and n(z) # x, we have z ¢ 05.

For (c): As Tyr = {y € T: y(a) = &, ¥r € O}, we have Ty C ([o)*.
We prove the opposite inclusion by contraposition. If y ¢ ', then there exists
z € O such that y{x) # z. Let V C O be a clopen set containing z such that
Vny{(V) = 0. By Lemima 3.4, there exists 7 € I'vy C T such that n(z) # z.
Then n(y(x)) = y(x) and y(n(z)) # ¥(x); hence v ¢ T.

Finally. the definition of a regular open set and (c) give (d). ]

Definition 3.10: Let H and K be two subgroups of I'. Then
(a) (H, K) is a commuting pair if

(D1) H'=K,K'*'=H and HNK ={1}.

{b) (H,K) is a strong commuting pair if it is a commuting pair satisfying the
following extra condition:
(D2) if N is a non-trivial normal subgroup of H (resp., K), then N1 = K
(resp. Nt = H).

The following two lemmas will be used in the proof of Proposition 3.13.

LEMMA 3.11: Let O be a non-empty openset of X andn € l'o,n# 1. If U isa
non-empty clopen set of O, then therc exists v € I'p such that

Y iyl # L.
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Proof: LetY € CO(X),Y C O be such that n(Y)NY =0. Let U = U; [[Us
be a non-trivial partition of U into clopen sets. By Lemma 3.3, there exist a
non-empty clopen set U] C U; and an element « € T such that

Q(U{) cY, a*=1 and aI(U{Ua(U;))c = 1.
There exist a non-empty clopen set U} C U and 3 € T such that

BUz) Cna(Uy) B*=1 and Bluuswyy: =1

Then v € T" defined by

a onUjua(l)

vy=¢B8 onUUBU,)

1 elsewhere
isin Tp. As an™?B(Us) C Uj and vy 'ny{an=!8(US)) C Us, the lemma is proved.
|
LEMMA 3.12: Let O be a non-empty openset of X andn € l'g,n# 1. Lety €T’
and let U be a non-empty clopen set of O such that v(U) C O and Un+(U) = 0.

Then there exist a non-empty clopen set Uy C U and an element ¢ € I'p such
that
Y@ ) (Uh) Ny~ (V1)) = 0.

Proof: Taking a subset of U and conjugating n by an element of I'p if necessary,
we may assume that there exists Y € CO(X) such that ¥ and n(Y") are disjoint
and both are contained in O \ (UU~(U)). Let Y = Y, ]]Y; be a non-trivial
partition of Y into clopen sets. Let U’, U” and U" be three disjoint, I'-equivalent
non-empty clopen sets such that U’ [[U” [[U" C U.

By Lemma 3.3, there exist a clopen set U; C U’ and two involutions o, 3 € T’
such that

eU)) cY, a(y(Uh))CYy and B(na(Uy)) cU", B(nay(Uy)) C v(U™),
and, moreover,
| (v ua(Un) Uy ) Ualyw)e = 1 and B(a(u;)upnaUs)unay(Uy)uBmay): = 1-

Then let ¢ € T be defined by
a  on Uy UalU) Uy(Ur) Ua(y(Ur)),

p=48  onnals)Upna(Us) Uney(Ui) U B(nay(Uh)),

1 elsewhere.

Then y~'mp(Ur) € U” and ¥~ 'nyp(y(Uh)) Cv(U™). 0
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ProposITION 3.13: If O is a regular open set, then (I'p,T'p.) is a strong
commuting pair.

Proof: By Lemma 3.9, it is enough to prove that the condition (D2) of Definition
3.10 is satisfied.

Let N be a non-trivial normal subgroup of T'p. As Tp. C N1, we only have
to show that if v ¢ '3, then v ¢ N+, If v ¢ T5(= o+ ), then there exists a
non-empty clopen set U, U C O, such that y(U)yNU =§.

If v(U)NO # 0, we can assume by taking a smaller clopen set that v(U) C O.
By Lemma. 3.12, there exist # € N and Uy C U such that

U} Npy(Uh) = 0.

If y(U)NO = 0, then v(U) C O°. By Lemma 3.11, there exist n € N and
z € U such that n(z) # z. Then yn(z) # v(z) and ny(z) = v(z). In both cases,

™ FE N
If N is a non-trivial normal subgroup of T'p., the proof is similar. ]

Definition 3.14:
(1) If v € Homeo(X), then X7 = {z € X; ¥(z) = =} denotes the fixed point
set of v and P, = (X7)¢ the support of y. Observe that P, is a regular
closed set of X.

(2) If H C Homeo(X), then the support Py of H will be U, ¢y Py

Remark 3.15: 1. If H C Homeo(X), then Py is a regular closed set. Both Py
and P§, are H*-invariant.

2. If v is an element of the topological full group of a minimal Cantor system
or of a minimal AF-system, then P, is clopen.

3. Let H C Homeo(X) and U € RO(X). If H C Ty, then Py C U.

LEMMA 3.16: If O is an open set, then Pr, = 0.

Proof: If n € Tp, then P, C O and therefore Pp, C O. If z € O, then, by
Lemma 3.4, there exists a clopen set V containing z and v € I'g,¥? = 1, such
that

V)NV =0 and ’)‘I(VU,Y(V))C =1.

Hence V C P, € CO(X) and so O C Pr,. As Pr,, is closed, the lemma is proved.
1
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LeMmMA 3.17: Let (H, K) be a strong commuting pair of I'. If A is a non-empty
H and K invariant clopen subset contained in Py (resp. in Py ), then A = Py
(resp. A= Pg).

Proof: Assume that A C Py and set

N={y€T,; v(z) =z,z € A° and 3n € H such that y(z) = n(z), z € A}
and

M ={y€T; v(z) ==z, z € A and 3n € H such that y(z) = n(z), = € A°}.

As A is H and K-invariant, N and M are normal subgroups of K+ = H.
Moreover, M C N+. As A is non-empty, N is non-trivial and N1 = K. Since
Mc HNN' = HNnK, then M = {1}.

Therefore, Tye C N* = K and H C (Tg<)* = ['(4eyr =T 4. Hence A = Py.
[ |

If Hy, Hy and H; are subsets of I', we will denote by (Hy, Hz, Hs) the subgroup
of I' generated by the elements of Hy, H, and Hs.

LEMMA 3.18: Let O be a clopen set of X and n € I" such that both n(O) N O°¢
and n(0O°)NO*° are non-empty. If U C O and V C OF€ are I'-equivalent non-empty
clopen sets, then there exists

x € (l'o,Tox,n)

such that x(U) = V,x(V) =U and x|uv)e = 1.

Proof: Let W C O be a non-empty clopen set such that [W] < [(0) N O] and
[W] < [n(0°)NO°). As [W] is an order unit in K°(X,T), there exists n such that
[U] < n[W]. Hence there exist aj,az,...,a, € K°(X,T')+ with a; < [W] and
[U]=[V] =a)+az+ - +a,. By Lemma 3.5, we can assume that U =[], A4;
and V =[], B; where A; and B; are clopen sets, with [A;] = [B;] = a;.

If for 1 < i < n, there exists x; €< I'o,['p1,n > such that x;(4;) =
Bi, xi(Bi) = Ai, and xi|(a,uB,)c = 1, then x = x1---xn satisfies the condi-
tion of the lemma.

Therefore we can assume that [U] is smaller than [n(0) N O¢] and [n(O°) N O}
in K°(X,T). By Lemma 3.3 and Lemma 3.5, there exist two involutions o € T'p
and f € I'gs such that

a(U) € 0nn~H0°), B(V) € 0°n~H(0°), alwuaw)- =1 and Blvuswy)e = 1.
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IfU, = o) and Vi = B(V), then 5(U;) and (V) are I'-equivalent clopen
sets contained in O° and by Lemma 3.3, there exists v € 'y1,¥? = 1 such
that y(n(U1)) = (V1) and ¥|mw,yuneay)e = 1. Then x1 = n7'yn belongs to
< I'pi,n > and by construction x1(U;) = V| and x1(Vi) = U;. Moreover, if
z € (U1uV1)9, then n(z) € (n(U1)un(V1))<; hence y(n(z)) = n(z) and x1(z) = z.

By construction x = afy; /3 satisfies the condition of the lemma. |

LEMMA 3.19: Let O be a clopen set of X and 17 € I such that both n(O) N O°
and n(0°) N O° are non-empty. Then the subgroup < I'p,I'gy,n > is equal to
r.

Proof: Let ¢ € I'and set O; = ONY~1(0) and O3 = ONY~1(0°). By Lemma
3.3, there exists an involution v € I'p such that

YW(O1)) =0y and Y|o,up0) = 1-

If O, = O, then yy¥(0) = O and therefore vy € Tplpx.
If O; # O, then Oy is a non-empty clopen set and by Lemma, 3.18, there exists
an element x €< I'p,[g1,n > such that

x(02) = y(02), x(7¥(02)) = Oz and  X|(0,uy¥(02))c = 1.

As Or C (02 U 7¥(02))°, we have x79(01) = x(O1) = Op and therefore

xyp(0) = 0.
Hence xvy € Tolps and ¥ €< T, gL, >. ]

LEMMA 3.20: Let O be a regular open set of X. Then the following conditions
are equivalent:

(a) O is clopen,

(b) for all U € RO(X), with O G U, we have O C U.

Proof: If O € RO(X) and O # O, then O # X. Furthermore, let V be a non-
empty clopen set in X ~ O. Then U = Q UV is a regular open set, which does
not contain O. Hence (b) implies (a). The converse is trivial. |

LEMMA 3.21: Let O be a regular open set of X. Then the following conditions
are equivalent:
(a) O is clopen,
(b) for any strong commuting pair (H, K') of subgroups of I" such that To G H,
the subgroup < H,I'p1 > generated by H and I'p. is equal to I

Proof: Let (H, K) be a strong commuting pair of subgroups of I', with I'g g H
and assume that O is clopen. First of all, notice that if there exists n € H such
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that 7(0°) C O, then yI'51n~! C Tp. Hence, g1 C 7 Tpn C H. Therefore,
by Lemma 3.9, H* C (Tp.)t =To C H. As (H,H") is a commuting pair,
H+ ={1}and H=T.

Thus we can assume that for every n € H,n(0O°)NO¢ # . Furthermore notice
that:

(3.21.1) there exists 7 € H such that n(0)NO° # 0.

Indeed, if for all n € H,n{(0) = O, then I'p is a normal subgroup of H. Hence
I'5 = K and H = T'p, which contradicts the assumption. As H is a group,
(3.21.1) follows. By Lemma 3.19, we then get that

(H,To1) 2(To,Tour,m) =T.

So (a) implies {b).

Conversely, by Lemma 3.20, we must show that if U € RO(X), with O g U
then O C U. Cousider the pair (I'y,T'y 1) of subgroups of I'. By Proposition
3.13, it is a strong commuting pair of subgroups of I' and by Lemma 3.9 (a),
I'o € Ty,To # I'y. The closed set O N U is (pointwise) fixed by the the group
generated by T'p. and I'y. Therefore O NU* is fixed by I' and by minimality of
the action of ', O N U< = 0. ]

Definition 3.22: A commuting pair (H, K) of subgroups of I satisfies condition

(D3) if

(D3) For any strong commuting pair (H’, K’) of subgroups of I' such that H C
H', H# H' (resp. H Cc H, H' # H), the subgroup (H’, K) (resp.
(H,K'’)) of I" generated by H' and K (resp. by H and K’) is equal to I.

LeEMMA 3.23: Let (H,K) be a strong commuting pair of subgroups of T,
satisfying condition (D3). Then Py and Py are clopen.

Proof: As Py is a regular closed set, O = (Py)° € RO(X). Then (I'p,[p1) is
a strong commuting pair of subgroups of I' such that H C I'p.

If H = Tp, then (H,K) = (I'o,[p:) and, by (D3) and Lemma 3.21, O is
clopen. As Py = O, then Py is clopen. Notice that in this case, Px = O1 is
also clopen.

If H C T'p, then by (D3), the subgroup (I'g, K') is equal to T. The closed set
0Py = Py ~ O is K-invariant, I'o-fixed and, by minimality of the action of T,
OPy = B. Therefore, Py is clopen.

Using U = (Pk)° and the strong commuting pair (I'y;.,Ty), we also get that
Py is clopen. |
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In the proof of the next lemma, we will use the following notation, borrowed
from Dye’s paper [D2]: If a, 8 € Homeo(X), then F(c, 3) denotes the closed set
{r € X; o(z) = B(z)}

Recall (Definition 2.2) that if H is a subgroup of Homeo(X ), 7[H] denotes the
topological full group of H.

LeMMA 3.24: Let (H, K) be a strong commuting pair of subgroups of ', such
that Py = Py = X and with the following property:

(3.24.1) IfO is a H- or K-invariant, non-empty open set of X, then O = X.
Then, T[H|N7[K]| = {1}.

Proof: If T[H| N 7{K] # {1}, then there exist 1, € H and &, € K such that
(3.24.2) 0 # F(no,k0)° C F(noy ko) # X.

If n1,me € H, with F(n;,72)° # 0, then, since F(m,n2)° is K-invariant, we get
by (3.24.1) that F(n1,7m2)° = X and therefore 7; = .

Let C{n,) be the conjugacy class of 7, in H. If a and 8 are two distinct
elements of C(n,) and n € H, we have:

(1) Flo,K0)° NF(B,50)° C Fla, B)° = 0.

(i) n(F(a,k0)°) = Fnan™, ko)°.

Let A be a I-invariant probability measure on X (which always exists). By
minimality of the action of ', we have by (ii) and (3.24.2)

A(F(a,50)°) = AM(F(no, £5)°) > 0, for all & € C(no).

Therefore, B = {F{a,x,)°; a € C(7,)} is 2 finite family of disjoint, non-empty
open sets. Moreover, the action of H on B is faithful. Indeed, if n € H is such
that

N(Fla, ko)) = Fla,k,)°  for all @ € C(n,),

then F(a,k,)° = F(nan™1,k,)° C F(nan~',a)°. Therefore nan~! = o for all
a € C(n,); hence n commutes with the normal subgroup of H generated by 7,.
As (H, K) is a strong commuting pair, then 5 € K and therefore n = 1.

As B is finite, then H is finite, but this contradicts (3.24.1). [ |

Definition 3.25: A pair (H, K) of subgroups of I is a Dye pair if it is a strong

commuting pair satisfying condition (D3} of Definition 3.22 and the following

extra conditions:

(D4) For all « € I' \ HK, there exists n € H \ {1} (resp. x € K ~ {1}) such
that ana~! € K (resp. ako™! € H).
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(D5) If N # {1} is a subgroup of I such that nNn~! = N for all n € H and
N ¢ K (resp., kNk™! = N forall k € K and N ¢ H), then NN H # {1}
(resp. NN K # {1}).

LEMMA 3.26: If O is a clopen set, then (T'p,T'p.) is a Dye pair.

Proof: The pair (I'o,T'g1) is a strong commuting pair of subgroups of T by
Lemma 3.13 and it satisfies (D3) by Lemma 3.21 applied to O and O°.

As O is clopen, if @« € ' \Tol'5+, then there exists V € CO(X),V C O such
that a(V) € O°. Then (D4) is verified by taking either n # 1, n € 'y C T'p, or
k#1, K€ Fn(V) CTloe.

To verify (D5), let N be a non-trivial subgroup of I' with nNn~! = N for all
n€Tlpand N € Tp.. Let us first show that

(3.26.1) Inelo,n#1, k€T gL suchthat nk € N.

As N ¢ Tou, (3.26.1) is clear if N C Tol'p.. If @ € N \Tolp., then by
(D4), there exists n # 1, n € I'p such that ana~! € T'pr. Hence, n~lana~! €
I'ol'or NN, because n~'an and o~ ! belong to N.

From (3.26.1), we can assume that 8 = nx € N, withn # 1, n € I'p and
k # 1,k € Tpr. Let v € Tp with ypy~! # . Then (y8y~1)3~! € N and
(YBy 1B~ =y It € To N {1}

The second part of the condition (D5) follows in the same way. |

LEMMA 3.27: Let (H, K) be a strong commuting pair of subgroups of T" satisfying
the conditions (D4) and (D5) and such that Py = Px = X.
If O is either a H- or a K-invariant non-empty open set, then O = X.

Proof: Let us assume that O is H-invariant. First of all, let us prove that
(3.27.1) l'oNHK ¢ K.

If there exists a € I'o ~ HK, then by (D4), there is n € H \ {1} such that
ana~! € K. As O is H-invariant, 7 'T'on = I'p for all n € H. Therefore
n lana! € To N HK and n~'ana~! ¢ K, which proves (3.27.1) in this case.
We can therefore assume that I'o C HK. If I'po C K, we have H C Fé =Tp:.
But this contradicts the assumption that O is non-empty. So (3.27.1) holds.

As nTo NHK)n™' =To N HK, for all n € H, we get by (D5) and (3.27.1)
that N=(ToNHK)NH =ToNH # {1}. As N is a normal subgroup of H,
we have by (D2) that N* = K.
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Since N C T'p, we have 'pr C K and H C I'p1e. By assumption, Py = X
and therefore O++ = X. Hence O = X. |

Lemma 3.26 together with the next proposition give an algebraic characteri-
zation of local subgroups (Definition 3.6), and hence of clopen sets.

ProprosITION 3.28: If (H, K) is a Dye pair of subgroups of ', then

(HaK) = (FP}“FPI#)'

Proof: By Lemma 3.23, Py and Py are clopen. To prove the proposition, it is
enough to show that Py N Px = (). Indeed, in this case Tp, C K+ = H C T'p,;
hence I'p, = H.

If Pg N Pg # 0, then it is a H- and K-invariant clopen set, and by Lemma
3.17, PyNPy = Py = Pk. As FPIC-I CcHLI=KCcC FPK = FPH7 we have P5 = 0.
Hence Py = Py = X. By Lemmas 3.24 and 3.27, we get

(3.28.1) rH N 7[K] = {1}.

Since Py = Pg = X, there exists a € 7[H] such that its fixed point set is not
K-invariant. Therefore o ¢ H and, by (3.28.1), a ¢ HK. By (D4), there exists
n € H \ {1}, with ana~! € K, which contradicts (3.28.1). Hence, Pz N Px = ()
and the proposition is proved.

4. Orbit equivalence and full groups

In this section we will use the algebraic characterization of local subgroups of
groups of class F, obtained in Section 3, to generalize in the context of groups of
homeomorphisms on a Cantor set (Proposition 5.2 of Dye [D2]).

Recall that a group of class F' is either (i) the topological full group 7[¢]
or (ii) the full group [#] of a minimal homeomorphism ¢ of a Cantor set X,
or (ili) a minimal AF-system T, i.e. T is a locally finite, countable group of
homeomorphisms of X, so that the action is minimal and ample.

Following Krieger ([K2]), we define

Definition 4.1: For i = 1,2, let X; be a topological space and I'! be a subgroup
of Homeo(X;). An isomorphism a: I'! — I'? will be called spatial if it is imple-
mented by a homeomorphism a: X7 = X, (i.e. for all y € T}, a(y) = aya™?).

Observe that a(I''z) = I'?(az) for all € X,. Then we have
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THEOREM 4.2: For i = 1,2, let X; be a Cantor set and I'* be a subgroup of
Homeo(X;) of class F. Then every group isomorphism a: ' — T? js spatial.

Proof: Let us recall first of all that if X; and X, are Cantor sets, then there is
a bijective correspondence between the homeomorphisms from X; to X and the
Boolean isomorphisms from CO(X;) to CO(X?) (see for example [H]). Therefore,
it is enough to construct a Boolean isomorphism a: CO(X;) — CO(X3) such that

(4.2.1) o(o)a =ao, forallocl.

By Propositions 3.26 and 3.28, if U € CO(X}), then a(T'};) is a local subgroup of
I'?, associated to a clopen set a(U). Remark that by Lemma 3.9 two clopen sets
U and V of X are equal if and only if I'}, = I',. Therefore we get a bijective
map a: CO(X;) = CO{X3). Furthermore, a preserves the intersection of clopen
sets. Indeed, if U,V € CO(X,),

FE(UOV) = a(anv) = a(F%I n F%/)
= a(Ty) Na(Ty) = Ta iy N Ty = T2nnay)-

Moreover
I2yey =Ty = o((TH)Y) = (@Ty)*t = Ci)* = Tigye-

Therefore, @ is a Boolean isomorphism.
For 0 € I" and U € CO(X;), we have I, ;) = ol't,671. Thus for all U €
CO(X1), we get

2,y = olow) = a(0Tho™!) = a(0)T2 i a(o™!) = T yaw)»
which proves (4.2.1). 1
We will draw several corollaries from Theorem 4.2. Recall that

Definition 4.3: 'The dynamical systems (Xj, ¢;) and (X3, ¢2) are flip conjugate
if (X1,¢1) is conjugate either to (X3, ¢2) or to (X2, ¢5").

Recall that C*(X, ¢) denotes the C*-algebra associated to the dynamical sys-
tem (X, ¢). Combining Theorem 4.2 with [GPS], Theorem 2.4, we get

COROLLARY 4.4: Fori=1,2, let (X;, ¢;) be two Cantor minimal systems. Then
the following are equivalent:
(1) (Xi,¢1) and (X2, ¢2) are flip conjugate.
(ii) 7[¢1] and T[¢2] are isomorphic as abstract groups.
(iii) There exists an isomorphism 6: C*(Xy,$1) = C*(X2,$2) so that 8 maps
C(X1) onto C(X3).
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Definition 4.5: If (X1,¢1) and (X, ¢;) are two dynamical systems, they are
(topologically) orbit equivalent if there exists a homeomorphism F: X; - X,
so that

F(Orby, (z)) = Orbg, (F(z)) for all z € X;.

We call such a map an orbit map.

Combining Theorem 4.2 with [GPS], Theorem 2.2, we get

COROLLARY 4.6: Fori=1,2, let (X;, ¢;) be two Cantor minimal systems. Then
the following are equivalent:
(i) (X1,¢1) and (X2, ¢,) are orbit equivalent.
(ii) [¢1]) and [¢q] are isomorphic as abstract groups.
(iii) The dimension groups K°(X;,¢:)/Inf(K%(Xi, ¢:)), i = 1,2, are order
isomorphic by a map preserving the distinguished order units.

Remark 4.7: If X is connected (or under the more general conditions of
Proposition 1.3), the equivalence between (i) and (ii) fails. Indeed, in these
cases, orbit equivalence is the same thing as flip conjugacy, while (ii) is always
true, the two full groups being isomorphic to Z.

For minimal AF-systems I', we get by combining Theorem 4.2 with [K2],
Corollary 3.6

COROLLARY 4.8: Let (X,T1),{X2,T2) be two minimal AF-systems, where X
and Xo are two Cantor sets.

Then T'y and Ty are isomorphic as abstract groups if and only if K°(X1,T;)
and K°(X2,T';) are order isomorphic by a map preserving the order units.

We will relate Corollary 4.8 with the notion of strong orbit equivalence. Let
us first recall the following definition

Definition 4.9: Let (X;,¢1) and (X2, ¢2) be minimal systems that are (topo-
logically) orbit equivalent. We say that (X1, 1) and (X2, ¢2) are strong orbit
equivalent if there exists an orbit map F: X; — X5 so that the associated orbit
cocycles have at most one point of discontinuity, each.

Let (X, ¢) be a Cantor minimal system. For all x € X, let
Orb} (z) = {¢*(z); k > 1}

denote the forward orbit of z.
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Definition 4.10: If (X, ¢) is a Cantor minimal system and y € X, we denote by
T[#]y the subgroup of 7[¢] consisting of those v such that 7(Orb;(y)) = Orb; (n).

Recall (Definition 2.5 and the paragraph preceding it) that for any y € X, 7(¢],
is a countable, locally finite group whose action on X is minimal and ample (i.e.
(X, 7[¢ly) is & mnimal AF-system).

By [K2], Corollary 3.6, all 7[¢], are isomorphic.

Combining Theorem 4.2 with [P}, Theorem 4.1, {GPS], Theorem 2.1, Corollary
4.4 and [K2], Corollary 3.6, we therefore get

COROLLARY 4.11: For i = 1,2, let {X;, ¢;) be two Cantor minimal systems.
Then the following are equivalent:
(1) (Xy, 1) and (X3, ¢2) are strong orbit equivalent.
(i) For any y; € X;, i = 1,2, 7|é1)y, and 7{¢3]y, are isomorphic as abstract
groups.
(iit) The dimension groups K%(X;,¢:), 1 = 1,2, are order isomorphic by a map
preserving the distinguished order units.
(iv) The C*-algebras C*(X1,$1) and C*(X3, ¢) are isomorphic.

5. The index map from 7[¢] and its kernel

Let (X, ¢) be a Cantor minimal system. As in Sections 2 and 4, we will denote
by Orb;(z) (resp. Orby (z)) the forward orbit {¢"(z);n > 0} (resp. backward
orbit {¢™(x);n < 0}) of z € X.

To simplify the notation, we will let T’ denote the topological full group of
(X,9), and for y € X, we will denote by I'yy; the locally finite ample group
T(dly, Le.

Ty = {7 €T; 7(0rb} (y)) = Orb; (y)}.

In the first part of this section, we show that up to normalization there exists
only one non-trivial homomorphism from T' to Z, which we call the index map
from T to Z. We denote the kernel of the index map by I'° and prove that its
topological full group is equal to I,

In the second part of this section, we show, using the same technigues as in
Section 3, that any group isomorphism between ['-groups is spatial. In Propo-
sition 5.8, we then prove that IV is a complete invariant for flip-conjugacy of
(X, 9).

First of all, let us fix y € X and give the following description of T' that we
will need later.
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Definition 5.1: For v € T, let k() be the cardinality of
Orb (y) Ny~ (Orbj (y)).
Hence, () is the number of points of Orby (y) sent by 7 to OrbI(y). Similarly,
A(wy) will denote the cardinality of Orb:; (y) Ny~ (Orby (v))-
Remark that as v € T', both (-y) and A{y) are finite.

Definition 5.2: For any k € N,[ € Z, let Vi1 be a clopen subset of X such that:
(1) for 1 <n < k; ¢l (y) € Vi,
(2) for —jl| +1<m < |If; ¢™(y) € Viu
(3) Vi N~ ClFR(V, 1) = 0.
Then oy € I is defined by

pF-2l on Vg i,
ok = ¢FH2M on ¢~ F 2 (v ),
1 elsewhere.

Keeping the above notations, we then get

LEMMA 5.3: The topological full group I' can be written as the disjoint union

I'= Hr{y}d)ggk,lr{y}'
k,l
Proof: Let 3: T — N x N be the map defined by 8(y) = (s(7), A(7)), where
k(7y) and A(v) are as in Definition 5.1. As

(k+1Lk) ifl>0
(k,k—1) ifl<0

we get that 3 is surjective. Moreover, one checks easily that if p > ¢, then

B(¢lok,) = {

B P q) = {n " 0ap—q72:% € Ty},
and if p < ¢, then

B0, 9) = {M#* " 0pq-pr2i% € Tiyy}-
Therefore I" = ]_[p) €N B~1(p,q), which proves the lemma. n

Let us now define the index map from I' to Z.
For v € T and k € Z, let X} be the clopen set {z € X ; v(z) = ¢*(z)}. Recall
(Definition 2.1) that the function n,: X — Z defined by

Ny = ZkXX;CY
k

is continuous. If a, 3 € T', then we have n,og = nq ©  + ng. Therefore we get



314 T. GIORDANO, 1. F. PUTNAM AND C. F. SKAU Isr. J. Math.

PROPOSITION 5.4: If u is a ¢-invariant probability measure on X, then the map
I,:T — R given by I,(y) = [y nydu is a homomorphism such that I,,(¢) = 1.

As every element of I'(,y is of finite order, as are all the oy, then I,(I") C Z
by Lemma 5.3, and any homomorphism from I" to Z is determined by the image
of ¢, and so is independent of the ¢-invariant probability measure p. Therefore
by Lemma 5.3 and Proposition 5.4, we get

ProrosiTioN 5.5: IfT is the topological full group of a Cantor minimal system,
then Hom(T', Z) is equal to Z.

We give some motivation for our definition of I,, coming from C*-algebra the-
ory. We adopt the notation of [P] (used in Section 2) for the elements of C* (X, ¢).
First of all, we obtain from the measure p a trace 7 on C*(X, ¢) by

N
r (Z fku’“) = [ sodu
_N

for fr, € C(X), —N <k < N. Secondly, there is a derivation § defined on some
dense subalgebra of C*(X, ¢). Its domain of definition includes C(X) and u and
we have

N N

) (Z fkuk) =Y kfiut

-N —-N

(in fact, 4 is the infinitesimal generator of the dual action of St on C*(X, ¢)).
From this we may define a cyclic one-cocycle w. We will not be precise about

its domain but

w(a®,a?) = 7(a%(a}))

for appropriate a®,a!. As described in Proposition 15 of the second chapter of
[C], such a cocycle gives a map from K;(C*(X,4)) = Z to C by mapping a
unitary w in C*(X,¢) to w(w* — 1,w —1). Now given v € T, let v, be the
unitary in C*(X,¢) described in Section 2. Then it is easily verified that our
map above sends [v,] in K1(C*(X, ¢)) to w(vy —1,uy — 1) = I,(7).

We will denote by [ the homomorphism defined in Proposition 5.4 and, for
v €T, call I(v) the index of 4.

Remark 5.6: If v € T', then with the notation of Definition 5.1, I(y) is also equal
to k() — A(y), thus independent of which y we chose at the outset. Indeed, the
map v € I' = k() — A7) € Z is a group homomorphism sending ¢ to 1.
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We give an outline of a proof of this, using C*-algebra techniques. Let H be the
Hilbert space (?(Z). Define a representation p of C*(X, ¢) on H by the covariant
pair

(p(£)E)(n) = fF(¢7"(¥))é(n) and (p(u)§)(n) = &(n — 1),
for f € C(X), € € I*(Z), n € Z. Let P denote the projection

&(n) forn <0,
0 for n > 0.

(PE)(n) = {

It is easy to verify that P commutes with p(C(X)) and that [P, p(u)] is compact.
It follows that [P, p(a)] is compact for every a € C*(X,¢), ie., (H,p,P) is a
Fredholm module for C*(X, ¢). We obtain an index map from K;{C*(X, ¢)) to
Z by sending a unitary v in C*(X, ¢) to the Fredholm index

Ind(Pp(v)P) = dimker(Pp(v) P) — dimker({Pp(v)P)*),

where we consider Pp(v)P as an operator on PH. Now, for v =v,, y €T, as
above, it is fairly easy to see that

dimker(Pp(v)P) = k(y) and dimker(Pp(v)*P) = A(y).

Definition 5.7: If T is the topological full group of a Cantor minimal system,
then I'° will denote the kernel of any non-trivial homomorphism from I to Z.

Then we have
PROPOSITION 5.8: The topological full group of T® is equal to T

Proof: By definition of T, it is sufficient to show that ¢ € 7[['°] to prove that
7% =T.
For all z € X, let V; € CO(X) be such that V, N ¢(V,) = 0. Then set

¢ on V,
'71 = ¢_1 on ¢(VI)’
1 elsewhere.

By construction, I(y;) = 0 and therefore v, € I'’.
As X is compact, there exist 21,2, ...,2, in X such that J_, Vo, = X. Set

U=V, Uz:Vz\Ul,...,Un:Vn\(UlU"'UUn_l).
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Then {Us,...,U,} forms a clopen partition of X and the homeomorphism «
defined by
Y(z) =y, (z) fzel;

belongs to 7[I'°]. As v = @, the proposition is proved. a

Let us now give a description of the normalizer N(I') of T' as a semi-direct
product. First of all, we introduce the following

Definition 5.9: 1If (X,¢) is a Cantor minimal system, then C¢(¢) denotes the
subgroup of all ¥ € Homeo(X) such that either y¢y™ = ¢ or y¢y~! = ¢71.

Let us recall the following (unpublished) Theorem 2.6 of M. Boyle [B1], which
will be used in Proposition 5.11.

THEOREM 5.10: Suppose ¢ and 1 are (topologically) transitive homeo-
morphisms of a compact metric space such that ¢ € r[y] and ¢ and @ have
the same orbits. Then ¢ is conjugate to 1) or ¥~ by an element of Tt} .

Remark that C¢(¢) acts by conjugation on the topological full group T', and
on the kernel I'? of the index map by Lemma 5.3.

PROPOSITION 5.11: Let (X, ¢) be a Cantor minimal system.
IfT' % C<(¢) denotes the semi-direct product of the topological full group I" of
¢ by C¢(¢), then we get the following short exact sequence:

03 Z-5T xC¢) 2 N(T) = 1,

where ¢ and ® are defined by «(n) = (¢", ¢~™) and D(v,n) = 7.

Proof: If v € N(T'), then y¢y~! € T'; moreover, y¢y~! and ¢ have the same
orbits. By Theorem 5.10, there exists n € T and € € {1, —1} such that y¢y~! =
né*n~!. Then n~ly € C¢(¢) and ®(n~!,ny) = 7. Therefore, ® is onto.

Let (v,n) € Kerg. Then v € T'NC%(¢). As the index of y¢y~! is one, «y
commute with ¢. It is easily observed that the only elements of I" that commute
with ¢ are powers of ¢. Hence ker(®) is equal to +(Z). |

From Proposition 5.11 and its proof, one gets easily

COROLLARY 5.12: Let (X, ¢) be a Cantor minimal system. IfT'° x C¢(¢) denotes
the semi-direct product of T° by C¢(¢), then T® x C¢(¢) is isomorphic to N(T').

To prove that any group isomorphism between I'’-groups is spatial, we define
as in Section 3 the notion of a local full subgroup I'Y;; U € CO(X), of I'® by

Y ={yer®; y(z) =z for all z € U°},
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and we indicate the necessary changes to be brought to Section 3 to characterize
them algebraically.

Notice first of all that if U and V are two clopen sets of X, then, by Lemma
3.3, U and V are I'’-equivalent if and only if U ~r V.

Therefore, the dimension group associated to the dimension range D(I) is
KX, $) (see Section 3).

For any pair H and K of subgroups of I'’, we consider as in Definitions 3.10,
3.22 and 3.25 the conditions (D1), (D2), (D3) and (D5) replacing I" by T'®. Then

Definition 5.13: A pair (H, K) of subgroups of I'V is a Dye pair if it satisfies the
conditions (D1), (D2), (D3) and (D5) and the following extra conditions (D4’).
Foralla € T° < HK,
(D4'.1) either there exists 7 € H \ {1} (resp. K € K ~\ {1}) such that

ana™! € K(resp. arke™' € H),

(D4'.2) or, for ally € H, ana™! € H (resp. for all &k € K, aka™! € K).
LEMMA 5.14: IfU is a clopen set, then (I';,T'}, ) is a Dye pair.

Proof: We just have to check condition (D4'): Let a € I N\ T{T?,, . If there
exists V € CO(X), with V C U and (V) C U¢, then we get (D4'.1). If not,
then a(U) = U and we get (D4’.2). The rest of the proof goes as in Lemma 3.26.
1

To prove the converse, we need the equivalent of Lemma 3.27.

LEMMA 5.15: Let (H, K) be a pair of subgroups of T'® satisfying the conditions
(D1), (D2), (D4') and (D5) and such that Py = Py = X. If O is a H- or
K-invariant non-empty open set, then O = X.

Proof: Let us assume that O is H-invariant, hence n71I'%n =T for alln € H.
It is enough to show that

(5.15.1) IYNHK ¢ K.

and then follow the proof of Lemma 3.27 verbatim.

If there exists o € TS, \ HK, then by (D4’) we get that either

(i) there is n € H ~ {1} such that ana=! € K — thus n'ana! € T NHK
and n7lana™! ¢ K, which proves (5.15.1) in this case; or

(il) for all n € H,ana™' € H. As o ¢ K, there exists n € H, ana™! # 1.
Then n7'ana™ ¢ K and n7'ana™! € I'Y N H, which proves (5.15.1) in this
case.
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So we may assume I'c C HK. Then {5.15.1) follows by the same argument as
in Lemma 3.27. |

Replacing Lemma 3.27 by Lemma 5.15, we get the equivalent of Proposition
3.28.

PROPOSITION 5.16: If (H, K) is a Dye pair of subgroups of I'°, then

Using this algebraic characterization of local subgroups of I', we obtain
THEOREM 5.17: Any group isomorphism between I'°-groups is spatial.
Therefore we get the following

COROLLARY 5.18: For i = 1,2, let {X;,¢;) be two Cantor minimal systems
and let T be the corresponding kernels of the index maps. If 'Y and T are
isomorphic, then the two Cantor minimal systems are flip conjugate.

Proof: By Proposition 5.8 and Theorem 5.17, any group isomorphism between
'Y and T') extends to a spatial automorphism between I'y and T's. Then the
corollary follows from Theorem 2.4 of [GPS]. |

Remark 5.19: Let (X, ¢) be a Cantor minimal system and let I'¥ be as above.
If K°(X, ) is 2-divisible, e.g. if (X, $) is the 2-odometer, we can prove that I'°
is a simple group. In fact, in this case I'y,) is also simple. However, we have
examples where I';,) is not simple, e.g. if (X, ¢) is the 3-odometer.

It is an open question whether I'? is a simple group in general; by Corollary 5.18
this would imply that a complete invariant for flip conjugacy of Cantor minimal
systems is a simple, countable group. We can prove that if I'? is simple, then it
is equal to the commutator subgroup [I',I'] of T'.
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