
ISRAEL JOURNAL OF MATIIEMATICS 111 (1999), 285-320 

FULL GROUPS OF CANTOR MINIMAL SYSTEMS 

BY 

THIERRY (]IORDANO* 

Department of Mathematics and Statistics, Unwerszty of Ottawa 
585 King Edward, Ottawa, KIN 6N5, Canada 

e-mail: giordanoOrnatrvx.ce.uottawa.ca 

AND 

IAN F.  PUTNAM* 

Department of Mathematics and Statistics, Unwersity of Victoria 
Victoria, B.C. V8W 3P~, Canada 

e-maff: putnam@math.uric.ca 

AND 

CHRISTIAN F. SKAU** 

Department o] Mathematical Sciences 
Norwegian Unwerszty of Science and Technology (NTNU) 

N-7034 7~ndheim, Nor~way 
e-mail: cskOmath.ntnu.no 

ABSTRACT 

We associate different types of full groups to Cantor minimal systems. 

We show how these various groups (as abstract groups) are complete in- 

variants for orbit equivalence, strong orbit equivalence and flip conjugacy, 

respectively. Furthermore, we introduce a group homomorphism, the so- 

called mod map, from the normalizers of the various full groups to the 

automorphism groups of the (ordered) K~ which are associated 

to the Cantor minimal systems. We show }low this in turn is related to 

the automorphisms of the associated C*-crossed products. Our results are 

analogues in the topological dynamical setting of results obtained by Dye, 

Connes-Krieger and Hamachi-Osikawa in measurable dynamics. 
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Introduct ion  

In his study of orbit equivalence of ergodic measure preserving transformations, 

Henry Dye introduced the notion of full group of such a transformation. Recall 

that if G is a countable group of non-singular transformations of a Lebesgue 

measure space (X,/z), then the full group [G] of G is the set of all non-singular 

transformations ~/of X such that 

~,(x) E Orbita(x), for #-a.e.x e X. 

Therefore, if G1 and G2 are two groups of non-singular transformations of (X, #), 

they have the same orbits if and only if G1 C [G2] and G2 C [G1]. 

In [D2], Henry Dye proved the following remarkable result: if G1 and G2 are 

two countable groups of measure preserving transformations acting ergodically 

on a Lebesgue space, then any group isomorphism between [G1] and [G2] is 

implemented by an orbit equivalence of G1 and G2. 

Let T1 and T2 be two non-singular transformations acting ergodically on a 

Lebesgue space. In [K1], W. Krieger proved that T1 and T2 are orbit equivalent 

if and only if their associated flows are conjugate. Note that this flow is the flow 

of weights of the von Neumann factor W* (X, #, T) associated to the dynamical 

system (X, #, T). 

Connes-Krieger ([CK]) in the measure preserving ease, and Hamachi-Osikawa 

([HO]) in the general case, have associated to any ergodic non-singular transfor- 

mation of (X, #) normalizing [G] an automorphism of the associated flow. This 

correspondence, the so-called mod map, is a group homomorphism. 

In IGPS], we obtained an analogue of Krieger's theorem for Cantor minimal 

systems, i.e. minimal homeomorphisms of a Cantor set X. If r and r are two 

minimal homeomorphisms of a Cantor set X, we proved that 

r and r orbit equivalent (resp. strong orbit equivalent) 

if and only if 

there is an order isomorphism, preserving the order unit l x ,  between the simple 

dimension groups 

K~ r176 (~1)) and K~ r176 r 

(resP.g~ r and K~ r 

In this paper, we obtain an analogue of Dye's result and we introduce the mod 

map for Cantor minimal systems. 
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We define the full group [r of a Cantor minimal system (X,r namely a 

homeomorphism ~b of X belongs to [r if 

~b(x) = r n(~), n(x) e Z for all x �9 X. 

The topological flall group r[r of (X, 4)) is the subgroup of [4)] consisting of the 
homeomorphisms whose associated orbit cocycle n(x) is continuous. 

In [K2], W. Krieger studied so-called ample, locally finite countable groups of 

homeomorphisms of a Cantor set X. 
Recall ([R], Chap 3, w that if F is such a group, then the associated C*-algebra 

C*(X, F) is an approximately finite dimensional (AF) C*-algebra. 

We call therefore such a system (X, F) an AF-system and denote the associated 

C*-algebra by AF (X, F). 

If (X, 4)) is a Cantor minimal system and y C X, let r[r denote the subgroup 

of "7 E r [ r  such that 7(Orb~-(y)) = Orb~(g), where Orb~-(y ) is the forward 

~orb i t  of y. By [K21, Corollary 3.6, all r[4)]~, y C X, are isomorphic groups. 
In Section ,5 of [P], Ian Putnam showed that r[r is a minimal AF-system. 

Let F be either (i) the full group, or (ii) the topological full group of a Cantor 

minimal system, or (iii) a minimal AF-system. 

Following Dye in [D2], we define for an open set O �9 X the local subgroups 

Fo  of F by 
No = {~ �9 F; 3'(x) = x, for all x �9 OC}. 

In Section 3, we characterize algebraically the local subgroups Fu for U a clopen 

subset of X. 
In Section 4, the results of the preceeding section are used to show the following 

result: 

THEOREM: Let ( X1, 4)1) and (X2, 4)2) be Cantor minimal systems. 
(i) (X1,4)a) and (X2,4)2) are orbit equivalent if and only if [4)1] and [4)2] are 

isomorphic. 
(ii) (X1,r and (X2,4)2) are flip-conjugate if and only if T[4)l] and r[4)2] are 

isomorphic. 
(iii) (Xl, 4)1) and (X2, r are strong orbit equivalent if and only if r[4)l]m and 

r[r are isomorphic for any y, �9 Xi, i = 1,2. 

We want to stress that the isomorphisms in (i), (ii) and (iii) are abstract 

isomorphisms. 

If (X, 4)) is a Cantor minimal system, we show in Section 5 that, up to nor- 

malization, there exists only one non-trivial homomorphism from r[4)] to Z. We 

will call this map the index map. 
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If C~(r denotes the subgroup of all 7 E Homeo(X) such that either ~,r -1 = 

r or .yr = r then we prove that  the normatizer g(~-[r of ~-[r (in 

Homeo(X)) is isomorphic to the semi-direct product of the kernel of the index 

map by C ~ (r 

Using a refinement of the methods used in Section 3, we show that  the kernel 

of the index map is a complete algebraic invariant of flip-conjugacy of a Cantor 

minimal systems (X, r 

Let HomeoM, (X) denote the subgroup of all homeomorphisms of X preserving 

the r probability measures on X. tn Section 1, we define a homomor- 

phism 

mod: HomeoM~ (X) --~ Aut(K~ r176 r 

Considering on Homeo(X) the topology of pointwise norm convergence on 

C(X), we then show: 

(i) ker(mod) is equal to the closure of [r 

(ii) the restriction of rood to the normalizer N([r of [r is surjective, 

(iii) HomeoM~(Z) = g([r 

Let C*(X, r be the C*-crossed product associated with (X, r and let C(X) 
be the C*-algebra of continuous functions on X. Let us denote by 

Autc(x)(C*(X, r the subgroup of automorphisms of C*(X, r which fix C(X) 
globally, and the inner ones by Innc(z)(C* (X, r 

In Section 5 of [P], Putnam considered the topological full group and showed 

that  if UN(C(X),C*(X,r denotes the subgroup of unitaries of C*(X,r 

normalizing C(X), then we have the short exact sequence: 

1 -+ U(C(X)) -+ UN(C(X),C*(X,r ~ ~-[r --+ 1. 

Using this, we prove in Section 2 that  we have two short exact sequences: 

1 ~ U(C(X)) ~ Autc(x)(C*(X, r > N(~-[r -~ 1 

1 --* U s ~ Innc(x)(C*(X,r > T[r --~ 1, 

where Ur = { f  e U(C(X)); 3g E U(C(X))withf = (g o r 

Let 

B r 1 6 2  f e C ( X , Z ) }  

be the subgroup of coboundaries of C(X,Z).  Recall that K~162  is order 

isomorphic to C(X, Z)/Br (with the usual ordering). 
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If HomeoB, (X) denotes the set of all homeomorphisms of X preserving Be, 

then as in Section 1 we define a homomorphism mod from HomeoB~(X) to 

Aut(K~ r We then show 

(i) ker(mod) is equal to the closure of both r[r and of r[r for any y E X, 

(ii) the restriction of mod to the normalizer N(r[r of r[r is surjective, 

(iii) HomeoB~(X) = N(r[r 

Notations: If X is a metric compact space, we denote by 

(i) O(X) the collection of all open subsets of X. 

(ii) CL(X) the collection of all closed subsets of X. 

(iii) CO(X) the Boolean algebra of all clopen subsets of X. 

(iv) Homeo(X) the group of all homeomorphisms of X. For 7 E Homeo(X) and 

U C_ X, Ylu denotes the restriction of "y to U. 

(v) For A C_ X, A ~ (resp. A, A c) denotes the interior (resp. closure, comple- 

ment) of A. Also, XA denotes the characteristic function of A. 

We will use LI to denote a disjoint union. 

1. The  full g roup  of  a C a n t o r  min ima l  s y s t e m  

Let (X, r be a dynamical system, where X is a compact Hausdorff space and 

r is a homeomorphism of X. For each x E X, we denote the C-orbit of x by 

Orbr 

Definition 1.1: 

(a) The full group [r of (X, r is the subgroup of all homeomorphisms "y of X 

such that 

"y(x) E Orb~(z), for all x E X. 

(b) We will denote by N[r the normalizer 

{c~ e Homeo(X) ; a[r -1 = [r 

of [r in Homeo(X). 

Remark 1.2: To any "y E [r is associated a map n : X --+ Z, defined by 

7(x) = r for x E X. 

If r has no periodic points, then n is uniquely defined and the closed sets Xk = 

{x E X ;  "y(x) = Ck(x)} = n-l({k}) form a partition of X, and 

x = H = 11 
kEZ kEZ 
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Using the result of Sierpinski (see for example [Ku]) which says that there is 

no non-trivial countable partition of a connected compact Hausdorff space into 

closed sets, we have (see [BT] or [GPS] and [Kup]) the following: 

PP~OPOSITION 1.3: Let (X, r be a dynamical system as above. If  either X is 

connected and r has no periodic points or if the complement of the periodic points 

is path-connected and dense, then the full group [r is equal to {r ; n �9 Z}. 

PROPOSITION 1.4: If  (X, r is a dynamical system, then 

N[r = {a e Homeo(X) ; a(Orbr = Orbr for all x �9 X}.  

Proo~ Let a �9 N[r x �9 X and k �9 Z. As oLCko~ -1 and a- lCka belong to [r 

we have 
a(r = aCka-l(a(x))  �9 Orbr 

and 
CZ-I(r  • o ~ - l c k o l ( X )  e O r b r  

Hence N[r C_ {a �9 Homeo(X) ; a(Orb,(x))  = Orb,(a(x)),  for all x �9 X}. 

Conversely, let a �9 Homeo(X) with a(Orbr = Orbr for all x C X, 

and ^f �9 [r If x E X, then there exist k, l �9 Z such that 

O~"/O: - 1  (X) = Cg"/(O~ - 1  (X)) -~- O~((fik(ot - 1  (X)))  : q)l(x). 

Hence, O~"/Ot -1 C [r and so a e N[r I 

Recall that  if A is a separable C*-algebra, then Aut(A) with the topology of 

pointwise convergence on A is a complete metrizable group. Let (x~)~>_l be a 

dense sequence in the unit ball of A, and for a, fl E Aut(A), set 

n > l  

Then d is a metric on Aut(A) whose induced topology on Aut(A) is the pointwise 

convergence in norm on A. Therefore we get 

LEMMA 1.5: I f X  is a compact metric space, then with the topology ofpointwise 

convergence in norm on C(X), Homeo(X) is a complete metrizable group. 

Remark 1.6: (a) This topology is equivalent to the following introduced in 

[GWl] and given by the metric 

d(a, fl) = sup d(a(x), 13(x)) + sup d(a -1 (:c), 13-1(x)). 
zEX xEX 
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(b) If (On)n> 1 is a sequence of of homeomorphisms converging to c~ in 

Homco(X), then for any U �9 CO(X), there exists N such that a,~(U) = o(U), 
for all n _> N. 

Let us denote by M(X) the w*-compact convex sct of" probability measures on 

X and by Mo the w'-compact convex subset of M(X) of r measures. 

If 7 �9 Homeo(X) and # �9 M(X), we denote by "~*(#) the probability measure 

# o 7 -1 . Notice that 7" defines an affine horneomorphism of M(X). 

Definition 1.7: The subgroup HomeoM~(X) will denote the set of all homeo- 

morphisms "~ �9 Hoineo(X) such that "r*(Mr = Me. 

It is easily verified that N[r C Homeou,(X).  

LEMMA 1.8: If (X,r is a Cantor minimal system, then the subgroup 
HomeoM~ ( X ) is closed. 

Proof: If (7-),~>1 is a sequence in HomeoM~(X) converging to 7, then by Remark 

1.6, for any U �9 CO(X), 7~(U) = 7(U) i fn  is large enough. Hence #(7-1(U)) = 

#(U) for all U �9 CO(X) and all/z �9 Mr By regularity of # �9 M~, the limit 7 

belongs to HomeoM~(X). II 

Let (X, r be a Cantor minimal system. By [GPS], Theorem 2.2, the simple 

dimension group K~ r176 r with order unit, is a complete invari- 

ant of orbit equivalence of (X, r Following G.A. Elliott's point of view, we will 

consider K~ r176 r as the associated flow of the minimal Cantor 

system (X, r and define a mod map as in [CK], [CT] and [HO]. 

Let Zr = {f �9 C(X,Z) ;  p(f) = 0, Vlz �9 My} and (C(X,Z)/Zr + be the 
positive cone defined by 

[f] > 0 if and only if #(f)  > 0, Vlz�9 Me, 

where [f] denotes the equivalence class of f E C(X,Z).  Then C(X,Z)/Zr is 

naturally order-isomorphic to K~ r176 r by [GPS], Theorem 1.13. 

Hence, if ~/ �9 HomeoM~ (X) and U �9 CO(X), then 

mod(7)([Xu]) = [X~(v)] 

gives rise to an order automorphism of K~ r176 q~)) preserving the 

order unit. 

As mod(a~) = mod(a)mod(~) for all a,/3 E HomeoM,(X), we have 
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Definition 1.9: Let Aut(K~162176 be tile group of all order 

automorphisms of K~ r176 r preserving the order unit I x .Then  

rood: HomeoM,(X) ~ Aut(K~ 4))/Inf(K~ r 

is the group homomorphism defined by ~ ~ mod(^f). 

LEMMa 1.10: Keeping the above notations, then ker(mod) = 14)]. 

Proof: By definition of rood and Zr we must show that 

[r = {'~ �9 HomeoM,(X) ; 2"(#) = # ; V/~ �9 Me). 

If ~f �9 [r then # o ,~-I = It, for all It �9 Me. Thus by Remark 1.6, 

[q~] g {'~ �9 HomeoM,(X) ; "f*(p) = #, V/~ �9 M,~}. 

Conversely, let "~ �9 t tomeo(X) such that 7"(It) = p. for all # �9 Al e and let 

(P~),~>1 be an increasing sequence of partitions of X (into clopen sets), whose 

union generates the topology of X. By [GW], Proposition 2.6 (see Lemma 3.3 

below), we can construct, for each n > 1, %, �9 [4)1 such that. 7n(U) -= 7(U) for 

each U ~ 7:',,. Then (7,~)~_>1 is a sequence in [01 whose limit is 7. II 

PROPOSITION 1.11: The restriction of rood to N[4)] is surjective. 

Proof: As K~ 4))/Inf(K~ 4))) is a simple dimension group, there exists by 

[p] and [HPS] (see for example [CPS], The~Jrem 1.12) a simple ordered Bratteli 

diagram (B, _>) such that if 0.. denotes the path space of B and ~ ~he Vershik 

transformation induced by (B, _>), we lmve 

K~ 4))/Inf(K~ r ~ K~ ~). 

Moreow,r, let C denote the equivalence relation on ~ given by 

wlCw2 if and only if wl and w2 are cofinal, 

and let, ['c be the minimal AF-system associated to C, i.e., l'c = r[~/,]y where y 

is the maximal path of f~ (see Definition 2.5). Then 

K~ ~;') ~ K~ Fc)). 

By [GPS], Theorem 2.2, there exists an orbit equivalence g : X -~ fl between r 

and ~p. 



Vol. 111, 1999 FULL GROUPS OF CANTOR MINIMAL SYSTEMS 293 

Recall that if 7/ �9 Homeo(~) preserves C, then it induces an isomorphism of 

K~ Fr which we denote by K0(~/). Let 

c~ �9 Aut(K~ r176 r 

By [K2], Corollary 3.6, there exists ~/E Homeo(f~) which respects C with K0(~/) = 

(~. Let a -- g-l~lg �9 Homeo(X). By construction, a(Orbr = Orbr for 

all x �9 X and mod(a) = K0(7]) = (~. By Proposition 1.4, a �9 N[r l 

PROPOSITION 1.12: The closure of N[r in Homeo(X) is HomeoM,(X). 

Proof: If 7 �9 HomeoM,(X), then by Proposition 1.11, there is ~] �9 N[r with 

mod(7) = mod(~). 

By Lemma 1.10, ~-17 �9 [r and therefore 7 �9 g[r 

As N[r C HomeoM, (X) and HomeoM, (X) is closed, Proposition 1.12 follows. 

I 

Remark 1.13: Mike Boyle constructs explicitly an element of 

nomeoM,(X) \ N[r in [B2]. I 

2. Topological  full g roup  of  a C a n t o r  min ima l  s y s t e m  

Let (X, r be a Cantor minimal system. As above, [r denotes the full group of 

( x ,  r  

Recall (Remark 1.2) that if ~/E [r then there exists a unique map n: X --~ Z 

such that ~(x) = r for all x E X. 

Definition 2.1: If (X, r is a Cantor minimal system, then 

(a) the topological full group ~-[r of r is the subgroup of all homeomorphisms 

y E [r whose associated map n: X -+ Z is continuous, 

(b) N(T[r denotes the normalizer of ~-[r in Homeo(X). 

Let ~ E TIC] and, for each k E Z, 

= {x �9 x ;  = : 

Then, (Xk)kez is a finite partition of X into clopen sets such that  

kEZ kEZ 

Therefore, TIC] is a countable group. 
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Definition 2.2: Let H be a subgroup of Homeo(X). 

To any finite family ( X k , ~ l k ) k =  1 .. . . . .  where Xk E CO(X), r/k E H and 

x = H = H  k(Xk), 
kEZ kEZ 

we associate the homeomorphism 3, of X defined by 

?(x) = ~k(x), for all x E Xk. 

The subgroup ~-[H] of all such homeomorphisms is the topological full group of 

H. 

Definition 2.3: Let (X, r be a Cantor minimal system and C*(X, r be the 

associated C*-crossed product. We let 

(a) Autc(x)(C*(X, r = {c~ E Aut(C*(X, r ; a(C(X)) = C(X)}, 

(b) Innc(x)(C*(X, r = Autc(z)(C*(X, r M Inn(C*(X, r 

(c) Ur = {f  E U(C(X)); 3 9 E U(C(X)) with f = (g o r 

The C*-crossed product C*(X, r is generated by C(X) and a unitary u such 

that 

ufu* = f o r for all f E C(X). 

C(X) is a maximal abelian subalgebra (masa) of C* (X, r 

Let us recall the C*-algebra construction of the topological full group given in 

Section 5 of [P]: 

Let UN(C(X),C*(X,r = {v E U(C*(X,r vC(X)v* = C(X)}. By [P], 

Lemma 5.1, if v E UN(C(X),C*(X,r then v = f ~ e z u n p n ,  where f E 
UC(X) and (P~)~ez is a finite partition of C(X) into orthogonat projections 

such that  I = ~ n e z  P~ = }--~nez Cn (p~). Moreover, this decomposition is unique. 
To such v E UN(C(X), C*(X, r we associate the element ~5(v) of the topo- 

logical full group given by 

r  = if  x e pn .  

Observe that  Ad v(g) = g o ~(v) -1, where g E C(X) and Ad v denotes the inner 

automorphism v- v* of C* (X, r 

Then we get the following short exact sequence: 

(*) 1 -~ U(C(X)) --+ UN(C(X),C*(X,r - ~  T[r l --4 1. 

This short exact sequence splits. Indeed, if 3' E TIc] and (Xk)kez is the associated 

finite partition of X, then v~ = ~ UkXxk E UN(C(X), C* (X, r and ~O(v~) = % 
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If a E Autc(x)(C*(X,r then a defines an automorphism of C(X) and 

therefore a homeomorphism 7r(a) of X such that  

oL(f) = f o 71-(o~) -1,  Vf E C(X). 

Let  L: U(C(X)) ~ Autc(x)(C*(X,r denote the homomorphism defined for 

g E U(C(X)) by 

t(g)f = f,  Vf  E C(X) and t(g)tt ---- ug. 

Then  we have 

PROPOSITION 2.4: Let (X, r be a Cantor minimal system. We have the follow- 

ing two short exact sequences: 

(2.4.1) 1 -~ U(C(X)) ~ > Autc(x)(C*(X, r ~ N(~-[r ~ 1, 

(2.4.2) 1 ~ Ur ~-~ Innc(x)(C*(X, r ~)W[r  1. 

These short exact sequences split. 

Proof: Let  rr, t and ~5 be as above and let a E Autc(x)(C*(X,r Then  we 

have for f E C(X), 

a (u fu  *) = a(u) f  o ~r(c~)-la(u) * E C(X). 

Hence, a (u )  E UN(C(X) ,C*(X,r  Thus,  there  is 77 E T[r and f~ E U(C(X)) 
with a (u )  = f~vn, according to (*). 

If 3' E ~'[r and g E C(X), then 

= a ( g  o r ( a )  o 3'-1) = a o Ad v~(g o 7r(a)) = Ad a(v~)(g).  

Therefore, T[r and C N(dr 
The  homomorphism t is clearly injective. If a E kerr ,  then for f E C(X) ,  we 

have 

a(u)fa(u*) = a(ufu*) = a ( f  o r  = f o r  = ufu*. 

Hence u* a(u) = g~ E U(C(X)) and t (g , )  = a.  

If 3' E N(T[r then 3'r E T[r Let  % r  E UN(C(X),  C*(X, r such 

tha t  

r162 1) -= 3"r 
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Let us denote by s(7 ) E Autc(x)(C*(X, r the automorphism given by 

s(~/)(f) = f o.~-1 V I E  C(X) and s(~/)(u) = v~r 

The map s: N(~-[r --> Autc(x)(C*(X, r is a homomorphism and by construc- 

tion 7r(s(o,)) = % Therefore the short exact sequence (2.4.1) splits. 

For the proof of (2.4.2), notice that if Adv E Innc(x)(C*(X, r then 

v E UN(C(X),C*(X,r 

Hence 7r(Adv) = q)(v) E ~-[r and 7rlInnc(x)(C.(X,r is surjective according to 
(*), 

If Adv E ker% then as C(X) is a masa in C*(X,r the unitary v is equal 

to g E U(C(X)). As u* Ad v(u) = u*gu-~ = (g o r the short exact sequence 

(2.4.2) is checked_ 

By construction, if 7 E TIC], then ~(7) = Ad v~. ! 

In [P], Ian Putnam has shown that if y E X, the C*-subalgebra A(y} of 

C*(X,r generated by C(X) and uCo(X \ {y}) is an AF (i.e. approximately 

finite dimensional) C*-algebra. Let UN(C(X),A{~}) denote the normalizer of 

C(X) in U(A(~})_ 

For all y E X, let 

OrbS(y) = {r ; k > 1} 

denote the forward C-orbit of y, and let ~-[r denote the subgroup of 7[r 

characterized by 

3' E T[r if 0'(OrbS(y)) = OrbS(y). 

By [P], Theorems 5.1 and 5.4, we then have that for any y E X, the group T[r 

is isomorphic to UN(C(X), A{y})/U(C(X)). It is a fact that for any y E X, T[r 

is a countable, locally finite ample group that acts minimally on X, i.e. a minimal 

AF-system according to the following definition. 

Del~nition 2.5: Let X be a Cantor set. A minimal AF-system F is a locally 

finite, countable group of homeomorphisms of X, so that the action is minimal 

and ample. By ample action of F we mean the following (see [K2]): whenever 

k k 

i=1 i=1  

are two clopen partitions of X with 7i E F, then 3, E F, where for i = 1 , . . . ,  k, 

o, lAi = "~iiA~. We also require that the fixed point set of each element of F is 

clopen. 



Vol. 111, 1999 FULL GROUPS OF CANTOR MINIMAL SYSTEMS 297 

It can be shown that  any minimal AF-system arises as some ~-[r as described 

above (cf. [K2] and [SV]). As in [SV], Chap 1.1, the groupoid C*-algebra A(X, F) 

associated to a minimal AF-system F of a Cantor set X is an approximately finite 

dimensional C*-algebra, whose C(X) is a Cartan subalgebra ([R], Definition 

4.13). The following definition is analogous to Definition 2.3. 

Definition 2.6: Let (X, F) be a minimal AF-system and A(X, F) be the associ- 

ated groupoid C*-algebra. We denote by 

(a) Autc(x)(A(X, F)) = {c~ �9 Aut(A(X, F)); (~(C(X)) = C(X)}, 

(b) Innc(x)(A(X, F)) = Autc(x)(A(X, F)) N Inn(m(x, F)), 

(c) z l ( r ,  u(c(x)))  = {w: r -~ v(c(x) ) ;  (w~ o v ) ~  = ~ for a~l ~, ~ �9 r} ,  

the group of one-cocycles, 

(d) BI(F ,U(C(X)))  = {w �9 Z ' (F ,U(C(X)) ) ;  3v �9 U(C(X)) such that w~ = 

(v o ~)v* for all ~, �9 F}, the group of one-coboundaries. 

If (~ �9 Autc(x)(A(X,F)), then a defines an automorphism of C(X) and 

therefore a homeomorphism 7r(c~) of X such that 

~(f) = f o ~(~)-1 vf  �9 c(x) .  

If u: F ~ U((A(X, F))) is the unitary representation of F which implements the 

action of F on C(X), then let us denote by 

L: Z I ( F ,  U(C(X)))  --~ Autc(x)(A(X, F)) 

the homomorphism defined for w C ZI(F, U(C(X))) by 

~(w)f : f, Vf E C(X) and ,(w)uw -- u~w.~. 

Recall (Definition 2.2) that if H is a subgroup of Homeo(X), T[H] denotes the 

topological full group of H. Then as in 2.4, we have 

PROPOSITION 2.7: Let (X, F) be a minima/AF-system. We have the following 
two short exact sequences: 

1 -~ ZI(F, U(C(X))) ~> Autc(x)(A(X,F)) ~ N(F) -~ 1, 

1 ~ a l ( r ,  U(C(X))) L> Innc(x)(A(X,V)) "~ V --+ 1. 

These short exact sequences split. 

Before defining a rood map as in the 

construction of the K-groups that we need. 

full group case, let us recall the 
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If r is a minimal homeomorphism of the Cantor set X (resp. F is a minimal 

AF-system), then we denote by 

Be = { f - f o r  �9 C(X,Z)} (resp. Br  -- { f - f o 3 " - l ; f  �9 C(X,Z),3 '  �9 F}) 

the coboundary subgroup of C(X, Z). Now K~ r (resp. K~ F)) is defined 

as C(X, Z)/Br  (resp. C(X, Z) /Br )  with the induced ordering. 

Then K~ r and K~ F) are simple dimension groups with distinguished 

order unit 1x = [Xx], where we let If] denote the equivalence class of f �9 

C(X, Z). If f = Xo, where O is clopen, we will sometimes write [O] to denote 

[Xo]. Moreover, if y �9 X, then K~ r and K~ r[r are order isomorphic 

(see [P] for a C*-algebra proof or [GW], Theorem 1.1 for a purely dynamical 

proof). 

Definition 2.8: The subgroup HomeoB, (X) will denote the set of all homeomor- 

phisms 3' �9 Homeo(X) such that 3"-1(Br = Be. 

For any y �9 X, we have the following inclusions: 

T[r C N(v[r C HomeoB~(X) and r[r C N(r[r C HomeoBr 

As in Section 1, we consider on Homeo(X) the topology of pointwise conver- 

gence in norm on C(X). Then we have 

LEMMA 2.9: If X is a Cantor set, the subgroup HomeoB~(X) is dosed. 

Definition 2.10: Let mod: Homeos~(X) -+ Aut(K~ r be the group homo- 
morphism defined for a �9 HomeoB~(X), by 

mod(a)([f]) = [ f  o o/ -1] ,  f �9 C(X,Z), 

where Aut(K~ r is the group of all order automorphisms of K~ r pre- 

serving the order unit l x .  

Neither r[~] nor T[r are closed subgroups. We have 

P R O P O S I T I O N  2.11: For any y E X, we have ker(mod) = r[r = r[r 

Proof'. By Lemma 3.3, which is proved in Section 3, T[r C_ ker(mod). 

Let y E X be fixed. If a = l iman, an E r[r and U E CO(X),  then there 

exists N such that an(U) = a(V), for n > N. Hence [a(V)] = [V]. Clearly the 
same holds true for f E C(X, Z). Therefore, T[r C ker(mod). 

Conversely, let a E ker(mod) and let (Pn),~>l be an increasing (i.e. P~ < 

Pn+l) sequence of partitions of X (into clopen sets), whose union generates the 



Vol. 111, 1999 FULL GROUPS OF CANTOR MINIMAL SYSTEMS 299 

topology of X. By Lemma 3.3, for each n _> 1, there exists an E T[r such that  

an(U) = a(U) for each U C 7)n. Hence, a C ~-[r I 

As K~ r ~ K~ T[r we get by [K2], Corollary 3.6, 

PROPOSITION 2.12: The restriction of rood to N(T[r is surjective. 

As in 1.12, we then have 

PROPOSITION 2.13: N(7-[r is dense in HomeoB,(X).  

3. A lgeb ra i c  c h a r a c t e r i z a t i o n  o f  t h e  local  s u b g r o u p s  o f  t h e  full g r o u p s  

Let X be a Cantor set. In this section, we will say that a group is of class F if it 

is one of the following subgroups of Homeo(X): 

�9 the topological full group T[r of a minimal homeomorphism r of X, 

�9 the full group [r of a minimal homeomorphism r of X, 

�9 a minimal AF-system F, i.e. F is a locally finite, countable group of home- 

omorphisms of X, so that the action is minimal and ample (cf. Definition 

2.5). 

Remark 3.1: The three cases are different by observing the following: 

(a) A minimal AF-system is a countable group, where each element has finite 

order. 

(b) T[r is also countable, but has elements of infinite order since r E T[r 

(C) The full group [r is uncountable. 

We will use the following notation of Hopf-equivalence (see for example [R]): 

DeI~nition 3.2: Let X be a Cantor set and F be a group of class F. 

(a) Two clopen sets U and V of X are F-equivalent (denoted by U "Jr V) if 

there exists ~/E F with "y(U) = V. 

(b) If U is F-equivalent to a proper clopen set of V, we will write U -< V. 

Let us denote by K~ F) the simple dimension group: 

�9 K~ r if F = T[r 

�9 g~  r176 r if F = [r 

�9 K ~ (X, F) if F is a minimal AF-system. 

If F is a group of class F, we remark that according to [K2] or [R], pp. 130- 

131, K~ F) is the simple dimension group associated to the dimension range 

D(F) = C O ( X ) / M r .  

Let us recall now some technical lemmas which will be used frequently in this 

section. 
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[,EMMA 3.3: Let I" be, a group of  class F and let U and V be two clopcn subsets 

o f  X .  Then  tile following are equivalent: 

(a) [Xd = [Xv} i,, A'~ 

(b) U ~ r  V 

(c) There  exists "~ E F with ?2 :: I such that ?(U)  = V and ?!,,uuv)~ :: 1. 

Proof: As (c)~(b)=~(a) is clear, we only have to check (a)~(c) .  

If F = [r this follows from [GW], Proposition 2.6. If F = ~[O] (resp. F a 

minimal AF-system), tilen it is a consequence of the Bratteli-Vershik model for 

(X, O) (of. [HPS], Theorem 4.7, and [J], Theorem 4.12 for the details). II 

By the minimal action of F, we get ~ a consequence of this result the following: 

LEMMa 3.4: Let F be a group ofcbi.ss F. N~r any U E CO(X) and every x E U, 

there is "y E F such that ~/(x) r x and ~t[u~ = 1, 72 = 1. 

The next lemma is proved in IGW], Lemma 2.5, if r = [0}; it follows from 

[HPS], Theorem 4.7 (for details see [J], Theorem 4.11), if F = T[r or a minimal 

AF-system. 

LEMMA 3.5: Let F be a group of  class F and U E CO(X) . I fO <_ a <_ [U] in 

K ~  F), then there exists A E CO(X) with A C_ U and [A] = a in KO(X,  F). 

Let us fix for the rest of this section a group F of class F. 

Definition 3.6: 

(1) If O E O ( X ) ,  then Fo will denote the set of all 3, E F such that 

"),(x) = x, for all x E 0':. 

(2) A subgroup of F of the form Pu, U E CO(X),  will be called a local 

subgroup of F. 

The aim of this section is to characterize algebraically the local subgroups of 

F, by introducing several conditions on pairs of subgroups of F. The conditions 

(D1), (D2) (of Definition 3.10) and (D4) (of Definition 3.25) follow from Dye's 

original paper, while conditions (D3) (of Definition 3.22) and (D5) (of Definition 

3.25) are new. 

Definition 3.7: For any subset H of F, the commutant of I l  in F will be denoted 
by H i . 

Note that if H = H -1, then H • is a subgroup of I". Keeping the standard 

notation (of. [H]), we will use the following: 
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Definition 3.8: 

(1) If O E O(X) ,  then O"  denotes the open set (O)r = (O~) r 

(2) If F E C L ( X ) ,  then F L denotes the closed set (F':) = (F~ c. 

(3) All open set O is regular if 0 •177 ----- () (i.e. (~)o = O). 

(4) A closed set C is regular if C •177 = C (i.e. ~ = C). 

We will denote by RO(X) the collection of all regular open subsets of X. Note 

that O E RO(X) if and only if O c is a regular closed set. 

LEMMA 3.9: l f  O, 01 and 02 are open sets of X ,  then 

(a) O~ ~: 0.2 "r Fo, c_ Fo~. 
(b) Co n ro~ = {1}. 
(c) (Fo) ~ = Fo~ and I'o C_ F~) • 

(d) I f O  E RO(X). then Fo = F~ • 

Proof: (b) follows directly from the definitions. 

For (a): If O1 C_ 02, then by definition Fo, C_ Fo2. Conversely, if z E O1, let 

I/ C O1 be a clopen set containing x. By Lemma 3.4, there exists r/ E Fv such 

that r/(z) r m. As ~l E Fv C_ Fo, C_ Fo2 and r/(z) r x, we have x ~ O~. 

For (c): As Fo~ = {7 �9 F: 7(x) = x, Vx �9 O}, we have Fo• C (Fo) I .  

We prove the opposite inclusion by contraposition. If "y {/ F~5. then there exists 

z �9 O such that 7(x) r x. Let V C O be a clopen set containing x such that 

Vr37(V)  = 0. By Lemma3.4,  there exists ~l �9  Fv C_ Po such that ~(x) r x. 

Then r/(3,(x)) = 7(x) and 7(,/(x)) -# 7(x); hence 3' ~ F~. 

Finally, tile definition of a regular open set and (c) give (d). | 

Definition 3.10: Let H and K be two subgroups of F. Then 

(a) (H, K) is a commuting pair if 

(D1) H ~ - = K , K  i = H  and H N K  ={1}. 

(b) (H, K)  is a strong conmmting pair if it is a comnmting pair satisfying the 

following extra condition: 

(D2) if N is a non-trivial normal subgroup of H (resp., K),  then N L = K 

(resp. N L = H). 

The following two lemmas will be used in the proof of Proposition 3.13. 

LEMMA 3.11: Let 0 be a non-empty open set of X and 7 / E F o , r / r  1. I f U  is a 

non-empty clopen set of O, then there exists 7 E Fo snch that 

7-~r/Tlv r 1. 
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Proof'. L e t Y  E CO(X) ,Y c O b e s u c h t h a t r l ( Y  ) ~ Y = 0 .  Let U = U t ] I U 2  

be a non-trivial partition of U into clopen sets. By Lemma 3.3, there exist a 

non-empty clopen set U~ C U1 and an element c~ E F such that 

c~(U~) C Y, a2 = 1 and c~J(u;u~(u~))~ = 1. 

There exist a non-empty clopen set U~ C U2 and/3 E F such that 

/3(U~) C ~ (U~)  /32 = 1 and fl[(u~u~(y~))~ = 1. 

Then "7 E P defined by 

on ui 

' 7=  /3 onU]u/3(u ) 

1 elsewhere 

is in Fo.  As eer1-~(U~) C U{ and ~-III"y((~T]-I/3(U~)) C U~, the lemma is proved. 

I 

LEMMA 3.12: Let O be a non-empty open set of X and rl E PO,rl ~ 1. Let "y E P 

and let U be a non-empty clopen set of O su& that "~(U) C O and U n'I(U) = 0. 

Then there exist a non-empty clopen set U1 C U and an element r E Fo such 

that 

7(r  n ~-1~r = 0. 

Proof: Taking a subset of U and conjugating r I by an element of Fo if necessary, 

we may assume that there exists Y E CO(X) such that Y and rl(Y ) are disjoint 

and both are contained in O \ (U U "I(U)). Let Y = Y1 I_I Y: be a non-trivial 

partition of Y into clopen sets. Let U', U" and U'" be three disjoint, F-equivalent 

non-empty clopen sets such that U' [ I  U" I_[ U'" C U. 

By Lemma 3.3, there exist a clopen set U1 C U' and two involutions a,/3 E P 

such that  

a(U1) C Y1, a(7(U1)) C Y2 and /3(rla(U1)) C U", /3(rla'7(U1)) C 7(U'"),  

and, moreover, 

aJ(u, uo,(ua )u~(u, )uo,(q,(u~)))~ = 1 and/3J(,7~(u~)u~,7~(u~)u,7,~3,(u~)u/~(no,,r(u,)))~ = 1. 

Then let r E Po be defined by 

Og on Ul [.Jot(U1) U"~(Vl) UO~('~(U1)), 

= /3 on u/3  (u1) u 

1 elsewhere. 

Then r162 C U" and ~b-ir/r C "I(U'"). I 
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PROPOSITION 3.13: If 0 is a regular open set, then (Fo ,Fo~)  is a strong 

commuting pair. 

Proof'. By Lemma 3.9, it is enough to prove that the condition (D2) of Definition 

3.10 is satisfied. 

Let N be a non-trivial normal subgroup of Fo. As FoJ_ C N • we only have 

to show that if 3, ~ F~, then 3  ̀ r N J-. If q' r F~)(= Fo~), then there exists a 

non-empty clopen set U, U C O, such that 7(U) N U = 0. 

If 7(U) N O r 0, we can assume by taking a smaller clopen set that 3'(U) C O. 

By Lemma 3.12, there exist r]E N and U~ C U such that 

3`v(u1) n ~3`(u1) = r 

If3,(U) n O  = 0, then-7(U) C O c. By Lemma3.11, there exist r/ E N and 

x E V such that rl(x ) ~ x. Then yr/(x) r 3`(x) and r~3`(x) = 3`(x). In both cases, 

~ r v~. 

If N is a non-trivial normal subgroup of F o l ,  the proof is similar. 1 

Definition 3.14: 

(1) If ~, E Homeo(X), then X~ = {z E X ; 7(x) = x} denotes the fixed point 

set of 3  ̀ and P~ = (X~) c the support of 3'- Observe that P~ is a regular 

closed set of X. 

(2) If H C Homeo(X), then the support PH of H will be UneH P~ r I �9 

Remark 3.15: 1. If H C Homeo(X), then PH is a regular closed set. Both PH 

and P~/ are H• 

2. If "7 is an element of the topological full group of a minimal Cantor system 

or of a minimal AF-system, then P~ is clopen. 

3. Let H C Homeo(X) and U E RO(X). If H C Pu, then PH C U. 

LEMMA 3.16: If O is an open set, then Pro = O. 

Proof." Ifr l  E Fo, then Pn C O and therefore Pro C O. I f x  E O, then, by 

Lemma 3.4, there exists a clopen set V containing x and ~, E Fo,3` 2 = 1, such 

that  

3`(V) MV = 0 and 3`lWu~(y))c = 1. 

Hence V C P~ E CO(X) and so O C Pro. As Pro is closed, the lemma is proved. 

I 
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LEMMA 3.17: Let (H, K) be a strong commuting pair ofF. IrA is a non-empty 

H and K invariant clopen subset contained in PH (resp. in PK), then A = PH 

(resp. A = PK). 

Proof'. Assume tha t  A C PH and set 

N = {~/C F;  7(x)  = x , x  E A ~ and 3~ C H such tha t  ~/(x) = 7(x),  x E A} 

and 

M = {7 e F ;  7(x)  = x, x E A and 37 C H such tha t  ~/(x) = 7(x),  x E A~}. 

As A is H and K-invar iant ,  N and M are normal  subgroups of K • = H.  

Moreover,  M C N • As A is non-empty,  N is non-tr ivial  and N • = K .  Since 

M C H N N  • = H O K ,  then  M = {1}. 

Therefore ,  FAc C N • = K and H C (FAt) • = F(A~)• = FA. Hence A = PH. 

l 

If H1 , / / 2  and Ha are subsets  of F, we will denote  by ( H I , / / 2 ,  Ha} the subgroup  

of F genera ted  by the elements  of H I , / / 2  and H3. 

LEMMA 3.18: Let 0 be a clopen set of X and 7 E F such that both 7(0) n 0 ~ 

and 7 ( O ~ ) n O  c are non-empty. IfU C_ 0 and V C 0 ~ are F-equivalent non-empty 

clopen sets, then there exists 

x c (Po, Pol ,  7) 

such tha t  x ( U )  = V, x ( V )  = U and Xl(uuv)c = 1. 

Proof." Let W c O be a non-empty  clopen set such tha t  [W] _< [7(0)  N O ~] and 

[W] _< [7(O ~) N O q .  As [W] is an order unit  in K~ F), there exists n such t ha t  

[U] <_ n[W]. Hence there exist al ,a: , . . .  ,a,~ E K ~  with ai <_ [W] and 
n 

[U] = [V] = al  + a2 + . "  + a,~. By L e m m a  3.5, we can assume tha t  U = ]_L=I Ai 
n 

and V = LIi=l Bi where Ai and Bi are clopen sets, with [Ai] = [Bi] = ai. 

If for 1 < i < n, there  exists Xi E <  F o , F o •  > such tha t  xi(Ai) = 

Bi ,xi(Bi)  = Ai, and  Xi[(&uB0c = 1, then X = X1 " " X ~  satisfies the  condi- 

t ion of the  lemma.  

There fore  we can assume tha t  [U] is smaller than  [7(0) n O c] and [r/(O ~) N O c] 

in K~ F). By L e m m a  3.3 and L e m m a  3.5, there exist two involutions a C Po  

and /3  E Fo•  such tha t  

c~(U) C ON~-l(OC),/3(V) C OCN7-1(OC),al(vu~(u))c -- 1 and = 1. 
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If UI = c,(U) and I/1 = [3(V), then 71(Ul ) and rl(V1 ) are F-equivalent clopen 

sets contained in 0 c and by Lemma 3.3, there exists 7 �9 F o •  2 = 1 such 

that  7(r/(U1)) = r/(V1) and 71(~(u~)uv(v,)y = i. Then X~ = r / - ' T r /  belongs to 

< F o ~ , r  / > and by construction xI(U1) = tq and )Q(V1) = U1. Moreover, if 

x �9 (U1UV1 )c, then 7}(x) �9 (7}(U1)UT/(V1))c; hence 7(r/(x)) = r/(x) and Xl(X) = x. 

By construction ~, = c~/3Xlafl satisfies the condition of the lemma. II 

LEMMA 3.19: Let 0 be a clopen set of X and "q �9 P such that both ~7(0) ~ 0 c 

and rl(O c) N 0 ~ are non-empty. Then the subgroup < Fo, Fo~, 71 > is equal to 

F. 

Proof: Let ~ �9 F and set O1 = Ofq~b-l(O) and 02 = OAr  By Lemma 

3.3, there exists an involution 7 �9 Fo such that 

7('r = 01 and "; ' l (o,u~(o,)y = 1. 

If O1 = O, then 7~b(O) = O and therefore 7~b E FoFo•  

If O1 # O, then 02 is a non-empty clopen set and by Lemma 3.18, there exists 

an element X � 9  Fo, Fo• r />  such that 

X(02)  = 7~(02) ,X(" /~ / ; (02) )  = 02 and Xl(o.~u,r,v(o~))c = 1. 

As O1 C (02 U 3,~/J(O2)) ~, we have X7r = x ( O I )  = O1 and t, herefore 

xTV, (o)  = o .  

Hence XT~[' C FoFo•  and ~ C< F o , F o •  II 

LEMMA 3.20: Let 0 be a regular open set of X .  Then the following conditions 

are equivalent: 

(a) O is clopen, 

(b) /br all U E RO(X),  with 0 C U, we have 0 C_ U. 

Proof: If O E RO(X) and O :/: O, then O # X. Furthermore, let V be a non- 

empty clopen set in X \ O. Then U = O U V is a regular open set, which does 

not contain O. Hence (b) implies (a). The converse is trivial. II 

LEMMA 3.21: Let O be a regular open set of X.  Then the following conditions 

are equivalent: 

(a) O is clopen, 

(b) for any strong commuting pair (H, K) of subgroups ofF  such that Fo C H, 

the subgroup < H, F o .  > generated by H and F o .  is equal to F. 

Proof: Let (H, K)  be a strong commuting pair of subgroups of F, with Fo C H 

and assume that  O is clopen. First of all, notice that  if there exists r / � 9  H such 
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that 77(0 c) C O, then rlFo.~r] -1 C_ Fo. Hence, Fo• C_ ~7-1For/C_ H. Therefore, 

by Lemma3.9,  H • C_ (Fo• • = Fo C H. As (H,H • is acommuting pair, 

H • ={1} and H = F .  

Thus we can assume that for every r/~i H, r/(O ~) N O ~ r @. Furthermore notice 

that: 

(3.21.1) there exists r/E H such that r/(O) f-I O" r @. 

Indeed, if for all 7/E H, ~1(O) = O, then Fo is a normal subgroup of H. Hence 

F~ = K and H = Fo, which contradicts the assumption. As H is a group, 

(3.21.1) follows. By Lemma 3.19, we then get that 

(H, Fo• ) _~ ( ro ,  ro~ ,  r/) = F. 

So (a) implies (b). 

Conversely, by Lemma 3.20, we must show that if U E RO(X), with O C U 

then O C U. Consider the pair (Fu, Fu• of subgroups of F. By Proposition 

3.13, it is a strong commuting pair of subgroups of F and by Lemma 3.9 (a), 
I 'o C Fu, F o r  Fu. The closed set O n U c is (pointwise) fixed by the the group 

generated by Fo~ and Fu. Therefore O N U c is fixed by F and by minimality of 

o fF ,  ONU~ = @. II 

3.22: A commuting pair (H, K) of subgroups of I" satisfies condition 

the action 

Definition 

(D3) if 

(D3) For 

H',  

(H, 

any strong commuting pair (H', K') of subgroups of P such that H C 

H :fi H'  (resp. H'  C H, H' r H), the subgroup (H ' ,K)  (resp. 

K')) of F generated by H'  and K (resp. by H and K') is equal to F. 

LEMMA 3.23: Let (H ,K)  be a strong commuting pair of subgroups of F, 

satisfying condition (D3). Then PH and PK are clopen. 

Proof: As PH is a regular closed set, O = (PH) ~ E RO(X). Then (Fo, Fo~ ) is 

a strong commuting pair of subgroups of F such that H C Fo. 

If H = Fo, then (H,K)  = (Fo,Fo•  and, by (D3) and Lemma 3.21, O is 

clopen. As PH = O, then PH is clopen. Notice that in this case, PK = 0 • is 

also clopen. 

If H C Fo,  then by (D3), the subgroup (Fo, K) is equal to F. The closed set 

OPH = PH \ 0 is K-invariant, Fo-fixed and, by minimality of the action of F, 

OPt-t = 0. Therefore, PH is clopen. 

Using U = (PK) ~ and the strong commuting pair (Fu~, Fu), we also get that 

PK is clopen. II 
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In the proof of the next lemma, we will use the following notation, borrowed 

from Dye's paper [D2]: If a,/3 E Homeo(X), then F(a,/~) denotes the closed set 

E X ;  = 

Recall (Definition 2.2) that if H is a subgroup of Homeo(X), T[H] denotes the 

topological full group of H. 

LEMMA 3.24: Let (H, K) be a strong commuting pair of subgroups of F, such 

that PH = PK = X and with the following property: 

(3.24.1) I f  O is a H- or K-invariant, non-empty open set of X ,  then 0 = X.  

Then, T[H] N T[K] = {1}. 

Proof: If 7[H] n T[K] r {1}, then there exist ~?o E H and t~o E K such that 

(3.24.2) 0 # F( o, ~ c F(Vo, no) # X. 

If rll,r/2 E H, with F(r/1,r/2) ~ ~ O, then, since F(rll,rl2) ~ is K-invariant, we get 

by (3.24.1) that  F(rll,r/2) ~ = X and therefore rtl = ~?2. 

Let C(rio) be the conjugacy class of rio in H. If a and ~ are two distinct 

elements of C(rlo ) and ri E H, we have: 

(i) F(c~, ~o)~ M F(~,  no) ~ C_ F(c~, 8) ~ = O. 

(ii) ~(F(~, t%) ~ = F(tla~ -1, no) ~ 

Let A be a F-invariant probability measure on X (which always exists). By 

minimality of the action of F, we have by (ii) and (3.24.2) 

)~(F(a, no) ~ = )~(F(rio, no) ~ > 0, for all c~ E CO?o). 

Therefore, B -- {F(c~, e;o) ~ ; c~ E C(rlo)} is a finite family of disjoint, non-empty 

open sets. Moreover, the action of H on B is faithful. Indeed, if 7/E H is such 

that 

ri(F(~, ~;o) ~ = F((~, no) ~ for all ~ E C(rlo), 

then F(a, t%)  ~ = FO?~rl-l,tr ~ C F(rlaT?-l,a) ~ Therefore rlarl- '  = c~ for all 

a E C(rlo); hence r 1 commutes with the normal subgroup of H generated by rio. 

As (H, K)  is a strong commuting pair, then r 1 E K and therefore 77 = 1. 

As B is finite, then H is finite, but this contradicts (3.24.1). I 

Definition 3.25: A pair (H, K) of subgroups of F is a Dye pair if it is a strong 

commuting pair satisfying condition (D3) of Definition 3.22 and the following 

extra conditions: 

(D4) For all a E F "-. H K ,  there exists ~ E H \ {1} (resp. ~ E K \ {1}) such 

that  aTla -1 E K (resp. ~ - 1  E H). 
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(D5) If N # {1} is a subgroup of F such that ~?N~ -1 = N for all 77 E H and 

N ~ K (resp., ~N~ -1 = N for all ~ E K and N ~ H), then N M H ~ {1} 

(resp. N M K # {1}). 

LEMMA 3.26: I f  O is a clopen set, then ( F o , F o i )  is a Dye pair. 

Proof: The pair (Fo ,Fo•  is a strong commuting pair of subgroups of F by 

Lemma 3.13 and it satisfies (D3) by Lemma 3.21 applied to O and O ~. 

As O is clopen, if a E F \ FoFo•  , then there exists V E CO(X), V C O such 

that a(V)  C O ~. Then (D4) is verified by taking either ~ # 1, ~ E Fv C Fo,  or 

# I, ~ E F~(v) C Fo• 

To verify (Dh), let N be a non-trivial subgroup of F with ~N~ -1 = N for all 

~? E Fo and N ~ Fo• Let us first show that 

(3.26.1) 3 ~ E F o , 7 / # l ,  n E F o •  such t h a t ~ E N .  

As N ~ Fo• , (3.26.1) is clear i f N  C FoFo•  I f a  E N \ F o F o •  , then by 

(D4), there exists ~ # 1, ~? E Fo such that aT?a -1 E Fo• Hence, ~ - l a ~ a - 1  E 

FoFo•  M N, because ~-la~? and a -1 belong to N. 

From (3.26.1), we can assume that  /3 = ~a E N, with ~ # 1, 77 E Fo and 

# 1, a E Fo• Let 7 E Fo with~/~7-1 # 7. Then (~/~?-1)~-1 E N and 
(~,~,) , -1)~-1 : ~r ]~- l?7-1  e r 0 \ {1}. 

The second part of the condition (D5) follows in the same way. I 

LEMMA 3.27: Let (H, K) be a strong commuting pair of subgroups o f f  satisfying 

the conditions (D4) and (Dh) and such that PH = PK = X .  

I f  0 is either a H-  or a K-invariant non-empty open set, then 0 = X .  

Proof." Let us assume that 0 is H-invariant. First of all, let us prove that  

(3.27.1) Fo N H K  ~ K. 

If there exists a E Fo "-. H K ,  then by (D4), there is ~ E H \ {1} such that  

a ~ a  -1 E K.  As O is H-invariant, ~?-IFo~ = Fo for all ~ E H. Therefore 

~-la~?a-1 E Fo N H K  and ~ - l a ~ a - 1  ~ K, which proves (3.27.1) in this case. 

We can therefore assume that Fo  C H K .  If Fo C_ K, we have H C_ F~ = F o i .  

But this contradicts the assumption that O is non-empty. So (3.27.1) holds. 

As ~(Fo M H K ) ~  -1 = Fo M H K ,  for all ~ E H,  we get by (Dh) and (3.27.1) 

that  N = ( F o n  H K )  M H = Fo M H # {1}. As N is a normal subgroup of H, 

we have by (D2) that N • = K. 
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Since N C Fo,  we have Fo• C K and H C Fo•177 By assumption, PH = X 

and therefore 0 •177 = X. Hence 0 = X. I 

Lemma 3.26 together with the next proposition give an algebraic characteri- 

zation of local subgroups (Definition 3.6), and hence of clopen sets. 

PROPOSITION 3.28: / f  (H, K) is a Dye pair o f  subgroups ofF,  then 

(H, K) = (Fp,{, Fp$).  

Proof: By Lemma 3.23, PH and PK are clopen. To prove the proposition, it is 

enough to show that PH M PK ---- (3. Indeed, in this case FPH C K • = H C Fpu ; 

hence F pg : H.  

If PH n PK ~ (3, then it is a H- and K-invariant clopen set, and by Lemma 

3.17, P H M P K  = PH = PK. As Fp~ C H • = K C Fp K -- FpH, we have P~/--  (3. 

Hence PH = PK = X .  By Lemmas 3.24 and 3.27, we get 

(3.28.1) r[H] n ~-[K] = {1}. 

Since PH ---- PK ---- X ,  there exists (~ E 7-[HI such that its fixed point set is not 

K-invariant. Therefore a ~ H and, by (3.28.1), a r H K .  By (D4), there exists 

E H -. {1}, with a~a  -1 E K,  which contradicts (3.28.1). Hence, PH M PK = 0 

and the proposition is proved. 

4. Orbit equivalence and full groups 

In this section we will use the algebraic characterization of local subgroups of 

groups of class F,  obtained in Section 3, to generalize in the context of groups of 

homeomorphisms on a Cantor set (Proposition 5.2 of Dye [D2]). 

Recall that  a group of class F is either (i) the topological full group ~-[r 

or (ii) the full group [r of a minimal homeomorphism r of a Cantor set X, 

or (iii) a minimal AF-system F, i.e. F is a locally finite, countable group of 

homeomorphisms of X, so that the action is minimal and ample. 

Following Krieger ([K2]), we define 

Det~nition 4.1: For i = 1, 2, let Xi be a topological space and F i be a subgroup 

of Homeo(Xi). An isomorphism (~: F 1 --+ F 2 will be called spa t ia l  if it is imple- 

mented by a homeomorphism a: X1 --+ X2 (i.e. for all 7 E F 1, (~(7) = aTa-1)  �9 

Observe that  a(Flx)  -- r2(ax) for all x E X1. Then we have 
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THEOREM 4.2: For i = 1,2, let Xi be a Cantor set and F i be a subgroup of 

Homeo(Xi)  of class F. Then every group isomorphism a: F 1 -+ F 2 is spatial. 

Proof: Let us recall first of all that if X1 and )22 are Cantor sets, then there is 

a bijective correspondence between the homeomorphisms from X1 to X2 and the 

Boolean isomorphisms from CO(X1) to CO(X2) (see for example [HI). Therefore, 

it is enough to construct a Boolean isomorphism a: CO(X1) --+ CO(X2) such that 

(4.2.1) a(cr)a = at7, for all a �9 r 1. 

By Propositions 3.26 and 3.28, if U �9 CO(X~), then a(r~]) is a local subgroup of 

F 2, associated to a clopen set a(U). Remark that by Lemma 3.9 two clopen sets 

U and V of X i are equal if and only if rb = rb. Therefore we get a bijective 

map a: CO(X1) --+ CO(X2). Furthermore, a preserves the intersection of clopen 

sets. Indeed, if U, V �9 CO(X1), 

~ ( r b )  n ~ ( r ~ )  ~ ~ = = F a ( U )  CI ra(v)  = Fa(U)na(V ). 

Moreover 

2 ro(v~)  = ~ ( r b ~ )  = ~ ( ( r b )  • = (~ ( rb ) )  ~ = (ro(u))~ ~ = r~o(u)~. 

Therefore, a is a Boolean isomorphism. 

For a E F i and U e CO(Xi), we have F~(u) = aFba -1. Thus for all U �9 

CO(X1), we get 

r ~ ( v )  = ~(r~(v))l = ~ ( o r b o - ' )  = ~ (o ) r~ (v )~(o  -1) -- Fa(~)a(u)' 

which proves (4.2.1). | 

We will draw several corollaries from Theorem 4.2. Recall that 

Definition 4.3: The dynamical systems (X1, r and (X2, r are flip con juga t e  

if (XI, r is conjugate either to (X2, r or to (X2, r 
Recall that  C* (X, r denotes the C*-algebra associated to the dynamical sys- 

tem (X, r Combining Theorem 4.2 with [GPS], Theorem 2.4, we get 

COROLLARY 4.4: For i = 1, 2, let ( Xi ,  r be two Cantor minimal systems. Then 

the following are equivalent: 

(i) (X1, r and (X2, r are flip conjugate. 

(ii) r[r and T[r are isomorphic as abstract groups. 

(iii) There exists an isomorphism 0: C*(X1,r --* C*(X2,r so that 8 maps 

C(X1) onto C(X2). 



Vol. 111, 1999 FULL GROUPS OF CANTOR MINIMAL SYSTEMS 311 

Definition 4.5: If (X1,r and (X2,r are two dynamical systems, they are 

(topologically) o rb i t  equ iva len t  if there exists a homeomorphism F: X1 --> X2 

so that 

F(Orbr = Orb~(F(x ) )  for all x �9 X1. 

We call such a map an o rb i t  map .  

Combining Theorem 4.2 with [GPS], Theorem 2.2, we get 

COROLLARY 4.6: For i = 1, 2, let (X~, r be two Cantor minima/systems. Then 

the following are equivalent: 

(i) (X1, r and (X2, r are orbit equivalent. 

(ii) [r and [r are isomorphic as abstract groups. 

(iii) The dimension groups K~162176162 i = 1,2, are order 

isomorphic by a map preserving the distinguished order units. 

Remark 4.7: If X is connected (or under the more genera] conditions of 

Proposition 1.3), the equivalence between (i) and (ii) fails. Indeed, in these 

cases, orbit equivalence is the same thing as flip conjugacy, while (ii) is always 

true, the two full groups being isomorphic to Z. 

For minimal AF-systems F, we get by combining Theorem 4.2 with [K2], 

Corollary 3.6 

COROLLARY 4.8: Let (X1, F1), (X2, F2) be two minimal AF-systems, where X1 

and )(2 are two Cantor sets. 

Then F1 and F2 are isomorphic as abstract groups if and only if K~ Pl) 
and K~ F2) are order isomorphic by a map preserving the order units. 

We will relate Corollary 4.8 with the notion of strong orbit equivalence. Let 

us first recall the following definition 

Definition 4.9: Let (Xl , r  and (X2,r be minimal systems that are (topo- 

logically) orbit equivalent. We say that (X1, r and (X2, r are s t r o n g  o rb i t  

equ iva len t  if there exists an orbit map F: X1 --+ X2 so that the associated orbit 

cocycles have at most one point of discontinuity, each. 

Let (X, r be a Cantor minimal system. For all x �9 X, let 

OrbS(x) = {r _> 1} 

denote the forward orbit of x. 
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Definition 4.10: If (X,~b) is a Cantor minimal system and y C X, we denote by 

T[r the subgroup of ~-[r consisting of those 7 such that 7(Orb~-(y)) = OrbS(y). 

Recall (Definition 2.5 and the paragraph preceding it) that for any y E X, T[r 

is a countable, locally finite group whose action on X is minimal and ample (i.e. 

(X, ~-[r is a minimal AF-system). 

By [K2], Corollary 3.6, all ~-[r are isomorphic. 

Combining Theorem 4.2 with [P], Theorem 4.1, [GPS], Theorem 2.1, Corollary 

4.4 and [K2], Corollary 3.6, we therefore get 

COFcOLLARY 4.11: For i = 1,2, let (Xi,r be two Cantor minimal systems. 

Then the following are equivalent: 

(i) (X1, r and (Xz, r are strong orbit equivalent. 

(ii) For any yi ~ X~, i = l, 2, ~'1r and v[r are isomorphic as abstract 

groups. 

(lii) The dimension groups K~ ~i), i = 1, 2, are order isomorphic by a map 

preserving the distinguished order units. 

(iv) The C*-algebras C*(X1, fbl) and C*(X2, ~2) are isomorphic. 

5. T h e  index  m a p  f rom T[r a n d  its kernel  

Let (X, r be a Cantor minimal system. As in Sections 2 and 4, we will denote 

by Orb~(x) (resp. Orbc(x)) the forward orbit {r > 0} (resp. backward 

orbit {r n < 0}) of x C X. 

To simplify the notation, we will let F denote the topological full group of 

(X, r and for y E X, we will denote by F{y} the locally finite ample group 

i .e. 

= {7 e r ,  7(OrbS(y)) -- OrbS(y)}. 

In the first part of this section, we show that up to normalization there exists 

only one non-trivial homomorphism from F to Z, which we call the index map 

from F to Z. We denote the kernel of the index map by F ~ and prove that  its 

topological full group is equal to F. 

In the second part of this section, we show, using the same techniques as in 

Section 3, that  any group isomorphism between F~ is spatiaI, tn Propc~ 

sition 5.8, we then prove that F ~ is a complete invariant for flip-conjugacy of 

( x , r  

First of all, let us fix y E X and give the following description of F that we 

will need later. 
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Definition 5.1: For 3' �9 F, let n(3,) be the cardinality of 

Orb ;  (y) M 7-1(Orb~-(y)). 

Hence, n(7) is the number of points of Orb ;  (y) sent by 3' to OrbS-(y). Similarly, 
),(3') will denote the cardinality of Orb~ (y) C/7 -1 ( O r b ;  (y)). 

Remark that as ~ / �9  F, both n(~/) and ),(2t) are finite. 

Detinition 5.2: For any k �9 N, l �9 Z, let Vk,l be a clopen subset of X such that: 
(1) for 1 < n < k; r �9 Vk,1 ' 

(2) for --[l[ + 1 < m _< ]l[; Cm(y) ~ Vk,l, 

(3) Yk,z A r = 0. 

Then ~rk, 1 �9 F is defined by 

{ r on Vk,l, 

ak,l = r k+2l/] on O-k-2]ll(vk,l), 

1 elsewhere. 

Keeping the above notations, we then get 

LEMMA 5.3: The topological full group P can be written as the disjoint union 

F = I I  F{Y}r ' 
k,l 

Proof'. Let fl: r -+ N x N be the map defined by fl(7) = (n(-y),)`(3')), where 

n(3,) and "\(3') are as in Definition 5.1. As 

(k + l,k) if l>_O 

fl(Ctak'z) = ( k , k - l )  i f l < O  

we get that fl is surjeetive. Moreover, one checks easily that if p _> q, then 

fl-l(p,  q) = {3'lCP--qOrq,p-q'~2; "/i �9 P{y} }, 

and if p < q, then 

fl-l(p, q) = {71r 7i E F{y}}. 

Therefore P = I_Ip,q~Nfl-l(p,q), which proves the lemma. I 

Let us now define the index map from P to Z. 

For 7 �9 F and k �9 Z, let X~ be the clopen set {x �9 X ;  3,(x) = Ck(x)}. Recall 

(Definition 2.1) that the function nT: X --+ Z defined by 

n7 = ~ kXx~d 
k 

is continuous. If a,  fl �9 F, then we have nao~ = n~ o fl + n~. Therefore we get 
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PROPOSITION 5.4: / f #  iS a r probaNtity measure on X ,  then the map 

Iv: F --+ R given by I,(~/) = I x  n , d #  is a homomorphism such that Iv(C) = 1. 

As every element of F{v } is of finite order, as are all the ek,l, then Iv(F ) C Z 

by Lemma 5.3, and any homomorphism from F to Z is determined by the image 

of r and so is independent of the r probability measure #. Therefore 

by Lemma 5.3 and Proposition 5.4, we get 

PROPOSITION 5.5: / f l  p is the topological full group of a Cantor minima] system, 

then Hom(F, Z) is equal to Z. 

We give some motivation for our definition of I v coming from C*-algebra the- 

ory. We adopt the notation of [P] (used in Section 2) for the elements of C* (X, r 

First of all, we obtain from the measure # a trace T on C* (X, r by 

T fku k = rod#, 

for fk E C ( X) ,  - N  < k < N. Secondly, there is a derivation 5 defined on some 

dense subalgebra of C*(X, r Its domain of definition includes C(X)  and u and 

we have 

fku k = kfku  k 
- N  

(in fact, 5 is the infinitesimal generator of the dual action of S 1 on C* (X, r 

From this we may define a cyclic one-cocycle w. We will not be precise about 

its domain but 
w(a ~ a 1) = ~-(a~ 

for appropriate a ~ a 1. As described in Proposition 15 of the second chapter of 

[C], such a cocycle gives a map from KI(C*(X,  r ~ Z to C by mapping a 

unitary w in C*(X,r t o w ( w * - l , w - 1 ) .  Now given0, E F, let v~ be the 

unitary in C*(X, r described in Section 2. Then it is easily verified that our 

map above sends [v~] in KI(C*(X,  r to w(v• - 1, v.y - 1) = Iv(7). 

We will denote by I the homomorphism defined in Proposition 5.4 and, for 

7 E F, call I(7) the index of 7. 

Remark 5.6: If 7 C F, then with the notation of Definition 5.1, I(7) is also equal 

to ~(7) - A(7), thus independent of which y we chose at the outset. Indeed, the 

map 7 E F ~ ~(7) - A(7) E Z is a group homomorphism sending r to 1. 
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We give an outline of a proof of this, using C*-algebra techniques. Let 7 /b e  the 

Hilbert space 12(Z). Define a representation p of C*(X, r on 7 / b y  the covariant 

pair 

(p(f)~)(n) -- f(r and (p(u)~)(n) = ~(n - 1), 

for f E C(X),  ~ E 12(Z), n E Z. Let P denote the projection 

S ~(n) for n < 0, 
(P~)(n) 

0 for n > 0. 

It is easy to verify that P commutes with p(C(X)) and that [P, p(u)] is compact. 

It follows that  [P,p(a)] is compact for every a E C*(X,r  i.e., (7 / ,p ,P)  is a 

Fredholm module for C* (X, r We obtain an index map from K1 (C* (X, r to 

X by sending a unitary v in C*(X, r to the Fredholm index 

Ind(Pp(v)P) = dim ker(Pp(v)P) - dim ker((Pp(v)P)*),  

where we consider Pp(v)P as an operator on P7/. Now, for v = v~, 3' E F, as 

above, it is fairly easy to see that 

dimker(Pp(v)P) = s(3') and dimker(Pp(v)*P) = A(3'). 

Definition 5.7: If F is the topological full group of a Cantor minimal system, 

then F ~ will denote the kernel of any non-trivial homomorphism from F to Z. 

Then we have 

PROPOSITION 5.8: The topological full group ofF ~ is equal to F. 

Proof: By definition of P ~ it is sufficient to show that r E T[F ~ to prove that 

~[r ~ = r.  
For all x E X, let Vx E CO(X) be such that Vx Cl r = 0. Then set 

r onVx, 

3'~ = r on r 

1 elsewhere. 

By construction, I(3'~) = 0 and therefore % E F ~ 
n As X is compact, there exist x l ,x2 , . . .  ,xn in X such that Ui=l v~, = x .  Set 

U~ = V~, U2 = V2" . .U~ , . . . ,V ' , ,  = V,, \ (U~ u . . . u U , , _ ~ ) .  
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Then {U1, . . . ,  Un} forms a clopen partition of X and the homeomorphism 3  ̀

defined by 

3'(x) = 3% (x) if x E Ui 

belongs to ~-[P~ As 3  ̀-- 0, the proposition is proved. I 

Let us now give a description of the normalizer N(F) of F as a semi-direct 

product. First of all, we introduce the following 

Definition 5.9: If (X,r  is a Cantor minimal system, then C~(r denotes the 

subgroup of all 3' E Homeo(X) such that either 7r -1 = r or 3,r = r 

Let us recall the following (unpublished) Theorem 2.6 of M. Boyle [B1], which 

will be used in Proposition 5.11. 

THEOREM 5.10: Suppose r and ~ are (topologically) transitive homeo- 

morphisms of a compact metric space such that r E r[~b] and r and ~b have 

the same orbits. Then r is conjugate to r or ~-1 by an element ofT[O] . 

Remark that  C~(r acts by conjugation on the topological full group F, and 

on the kernel F ~ of the index map by Lemma 5.3. 

PROPOSITION 5.11: Let (X,r  be a Cantor minimal system. 

If P ~ C ~ (r denotes the semi-direct product of the topological full group F of 

r by C ~ (r then we get the following short exact sequence: 

0 --+ z ~> r ~ c~(r -% N(r)  ~ 1, 

where ~ and �9 a r e  defined by ~(n) = (Ca, c--n) and q)(3,, r]) = 3`r/. 

Proof: If 3  ̀ E N(F),  then 3,r �9 F; moreover, 3,r and r have the same 

orbits. By Theorem 5.10, there exists r/E P and e E {1 , -1}  such that 3,r = 

ricer/-1. Then r/-13, �9 C~(r and ~(rl-l,rl3,) = 3'- Therefore, (I) is onto. 

Let (3`,7) �9 Kerr Then 3, �9 F D C~(r As the index of 7r -1 is one, 3  ̀

commute with r It is easily observed that  the only elements of F that  commute 

with r are powers of r Hence ker(~5) is equal to ~(g). I 

From Proposition 5.11 and its proof, one gets easily 

COROLLARY 5.12: Let (X, r be a Cantor minimal system. I fF  ~ * C~(r denotes 

the semi-direct product o f f  ~ by C~(r then F ~ * C~(r is isomorphic to N(F). 

To prove that  any group isomorphism between F~ is spatial, we define 

as in Section 3 the notion of a local full subgroup F ~ ; U �9 CO(X),  of F ~ by 

F ~  ~ 7 ( x ) = x f o r a l l x E U C } ,  
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and we indicate the necessary changes to be brought to Section 3 to characterize 

them algebraically. 

Notice first of all that  if U and V are two clopen sets of X, then, by Lemma 

3.3, U and V are F~ if and only if U ~ r  V. 

Therefore, the dimension group associated to the dimension range D(F ~ is 

g ~  r (see Section 3). 

For any pair H and K of subgroups of F ~ we consider as in Definitions 3.10, 

3.22 and 3.25 the conditions (D1), (D2), (D3) and (Dh) replacing F by F ~ Then 

Definition 5.13: A pair (H, K) of subgroups of F ~ is a Dye pair if it satisfies the 

conditions (D1), (D2), (D3) and (Dh) and the following extra conditions (D4'). 

For all a E F ~ \ H K ,  

(D4'.l) either there exists 77 E H \ {1} (resp. ~ E K \ {1}) such that  

c~c~ - t  E K(resp. ( ~ a  -~ E H),  

(D4'.2) or, for all 77 E H, O~r}O~ - 1  E H (resp. for all ~ E K,  aaa  -1 E K). 

LEMMA 5.14: I f V  is a clopen set, then ( F ~ 1 7 6  is a Dye pair. 

0 0 . If there Proof: We just have to check condition (D4'): Let a E F ~ \ FuFu•  

exists V E CO(X),  with V C U and a(V)  c U c, then we get (D4'.1). If not, 

then a(U) = U and we get (D4'.2). The rest of the proof goes as in Lemma 3.26. 

I 

To prove the converse, we need the equivalent of Lemma 3.27. 

LEMMA 5.15: Let (H, K) be a pair of subgroups o f f  ~ satisfying the conditions 

(D1), (D2), (D4') and (Dh) and such that PH = PK ---- X .  I f  0 is a H-  or 

K-invariant non empty  open set, then 0 = X .  

Proof." Let us assume that  O is H-invariant, hence ~ - l F ~  -- F ~ for all ~/E H. 

It is enough to show that 

(5.15.1) F ~ n H K  ~= g .  

and then follow the proof of Lemma 3.27 verbatim. 

If there exists a E F~ \ H K ,  then by (D4') we get that either 

(i) there is r] E- H \ {1} such that arla - I  E K - -  thus r]-~a~a -1 E P~ N H K  

and O-lar]a -1 q~ K,  which proves (5.15.1) in this case; or 

(ii) for all r] E H, aT?a -1 E H. As a ~ K,  there exists r]E H,  ar]c~ -1 ~ r/. 

Then r ] - lar la  -1 ~ K and r/-lar/ot -1 E I ~O CI H, which proves (5.15.1) in this 

c a s e .  
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So we may assume Fo C H K .  Then (5.15.1) follows by the same argument as 

in Lemma 3.27. | 

Replacing Lemma 3.27 by Lemma 5.15, we get the equivalent of Proposition 

3.28. 

PROPOSITION 5.16: If (H, K) is a Dye pair of subgroups of F ~ then 

(H, K) o 0 = (rp . ,  rp ). 

Using this algebraic characterization of local subgroups of F ~ we obtain 

THEOREM 5.17: Any group isomorphism between r~ is spatial. 

Therefore we get the following 

COROLLARY 5.18: For i = 1,2, let (Xi ,r  be two Cantor minimal systems 

and ]et F ~ be the corresponding kernels of the index maps. If F ~ and r ~ are 

isomorphic, then the two Cantor minimal systems are flip conjugate. 

Proof: By Proposition 5.8 and Theorem 5.17, any group isomorphism between 

r ~ and r ~ extends to a spatial automorphism between r l  and F2. Then the 

corollary follows from Theorem 2.4 of [GPS]. | 

Remark 5.19: Let (X, r be a Cantor minimal system and let F ~ be as above. 

If K~ r is 2-divisible, e.g. if (X, r is the 2-odometer, we can prove that F ~ 

is a simple group. In fact, in this case F{~} is also simple. However, we have 

examples where F{~} is not simple, e.g. if (X, r is the 3-odometer. 

It is an open question whether F ~ is a simple group in general; by Corollary 5.18 

this would imply that a complete invariant for flip conjugacy of Cantor minimal 

systems is a simple, countable group. We can prove that if F ~ is simple, then it 

is equal to the commutator subgroup [F, F] of F. 
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